
© 1996-2006 Vision Components GmbH Ettlingen, Germany

 Vision
Components
The Smart Camera People

Extension Library Manual

Revision 2.4 December 18th, 2009 ME
Document name: Extensionlib.Doc
© Vision Components GmbH Ettlingen, Germany

ExtensionLib.doc – Extension Library Manual

© 1996-2009 Vision Components GmbH Ettlingen, Germany

2

Foreword and Disclaimer
This documentation has been prepared with most possible care. However, Vision Components GmbH
does not take any liability for possible errors. In the interest of progress, Vision Components GmbH
reserves the right to perform technical changes without further notice.
Please notify support@vision-components.com if you become aware of any errors in this manual or
if a certain topic requires more detailed documentation.
This manual is intended for information of Vision Component’s customers only. Any publication of this
document or parts thereof requires written permission by Vision Components GmbH.

Trademarks
Code Composer Studio and TMS320C6000, Windows XP, Total Commander, Tera Term, Motorola
are registered Trademarks. All trademarks are the property of their respective owners.

References
Since the VC40XX smart camera family employs a TI processor, the programming environment and
functions for the VC20XX cameras can be used for this camera.

Please also consult the following resources for further reference:

 “Knowledge Base / FAQ” for a searchable data base of SW and HW questions / answers.

Description Title on Website Download Area

 Quick start Manual for VC
camera set up and
programming

 Getting Started VC Smart
Cameras with TI DSP

Getting Started VC SDK Ti

 Schnellstart VC – deutsche
Version of „Getting Started VC“.

 Schnellstart VC Smart
Kameras

Getting Started VC20XX and VC40XX
Cameras

Introduction to VC Smart Camera
programming

 Programming Tutorial for
VC20XX and VC40XX
Cameras

Getting Started VC20XX and VC40XX
Cameras

Demo programs and sample code
used in the Programming Tutorial

 Tutorial_Code Getting Started VC20XX and VC40XX
Cameras

VC4XXX Hardware Manual VC40XX Smart Cameras
Hardware Documentation

Hardware Documentation VC Smart
Cameras

VCRT Operation System Functions
Manual

 VCRT 5.0 Software Manual Software documentation VC Smart
Cameras

VCRT Operation System TCP/IP
Functions Manual

 VCRT 5.0 TCP/IP Manual Software documentation VC Smart
Cameras

VCLIB 2.0 /3.0 Image Processing
Library Manual

 VCLIB 2.0/ 3.0 Software
Manual

Software documentation VC Smart
Cameras

- The Light bulb highlights hints and ideas that may be helpful for a development.
- This warning sign alerts of possible pitfalls to avoid. Please pay careful attention to

sections marked with this sign.

Author: VC Support, mailto:support@vision-comp.com

!

ExtensionLib.doc – Extension Library Manual

© 1996-2009 Vision Components GmbH Ettlingen, Germany

3

Table of Contents

1 Affine and non-affine coordinate transformations 4

2 Filter functions 16

3 Edge detection 23

4 Programs for gray scale correlation 26

5 Programs for processing binary images in (unlabelled) run length code 29

6 Programs for processing binary images in labelled run length code 31

7 Miscellaneous Image Functions 42

8 Programs for processing pixel lists 45

9 Geometric tools 52

10 Hough Transform 55

11 Hough Transform for Circles 64

12 Fast Fourier Transform 70

13 Routines for Linescan Camera 76

14 Numerical algorithms from linear algebra 78

15 Solar Wafer Library 80

Appendix A: Utilities A

Appendix B: Corr2 - normalized grey scale correlation A

Appendix C: List of library functions B

ExtensionLib.doc – Extension Library Manual

© 1996-2009 Vision Components GmbH Ettlingen, Germany

4

1 Affine and non-affine coordinate transformations

rotate90l rotate image by 90 degrees counter-clockwise
rotate90r rotate image by 90 degrees clockwise
rotate180 rotate image by 180 degrees
move_image_alpha move image with 2D interpolation
affine_image_transform general affine image transform
affine_image_transform2 general affine image transform (floating-point)
calc_rotation_matrix calculate affine rotation matrix
polar_image_transform polar to cartesian image transformation
polar_image_transform2 polar to cartesian image transformation
mirror_hor mirror image horizontally
mirror_ver mirror image vertically
xshear horizontal image shear
lens_transform lens distortion correction
lens_transform2 lens distortion correction, type 2

Affine transformations map one coordinate system into a different one using a linear mapping. All
affine transformations can be specified by the following formula

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
]1[
]0[

]1][1[
]1][0[

]0][1[
]0][0[

'
'

t
t

y
x

a
a

a
a

y
x

Where

(x, y) coordinate in the source coordinate system
(x’, y’) coordinate in the target system
a[0][0], a[0][1] coefficients of the transformation matrix
a[1][0], a[1][1]
(t[0], t[1]) displacement vector

With the above formula any combination of the following transformation may be performed:

- displacement (movement) parallel to x and y axis
- rotation with an arbitrary rotation center point
- shear
- size scaling (zoom up / down) in x and y separately
- mirroring

For the function affine_image_transform() the inverse transformation matrix is used.
I.e. (x,y) now is the coordinate in the target image variable and (x’,y’) in the source image.

ExtensionLib.doc – Extension Library Manual

© 1996-2009 Vision Components GmbH Ettlingen, Germany

5

rotate90l rotate image by 90 degrees counter-clockwise

synopsis void rotate90l(image *src, image *dst)

description The function rotate90l() rotates an image by 90 degrees counter-

clockwise. It is not possible to use the function in-place, i.e. source and
destination images must not overlap.

The function rotates the whole image if the dimensions of source and
destination image fulfil the following conditions:

src->dx = dst->dy
src->dy = dst->dx

If this is not the case, only a fraction of the source image is rotated with the
following dimensions:

dx = min(src->dx, dst->dy)
dy = min(src->dy, dst->dx)

The function splits the source image into tiles which can be processed very
efficiently even with limited cache memory size.

memory none

see also rotate90r()

rotate90r rotate image by 90 degrees clockwise

synopsis void rotate90r(image *src, image *dst)

description The function rotate90r() rotates an image by 90 degrees clockwise.

Please refer to the documentation of rotate90r () for the details.

memory none

see also rotate90l()

rotate180 rotate image by 180 degrees

synopsis void rotate180(image *src, image *dst)

description The function rotate180() rotates an image by 180 degrees. It is possible

to use the function in-place, i.e. source and destination images may be
identical. In this case, the function uses a slightly faster exchange-and-reverse
routine.

If source and destination images are not identical but overlap, the result is not
defined.

ExtensionLib.doc – Extension Library Manual

© 1996-2009 Vision Components GmbH Ettlingen, Germany

6

The function rotates the whole image if the dimensions of source and
destination image fulfil the following conditions:

src->dx = dst->dx
src->dy = dst->dy

If this is not the case, only a fraction of the source image is rotated with the
following dimensions:

dx = min(src->dx, dst->dx)
dy = min(src->dy, dst->dy)

memory none

see also rotate90l()

move_image_alpha move image with 2D interpolation

synopsis I32 move_image_alpha(image *src, image *dst,

float mx, float my, U8 bgnd)

description The function move_image_alpha() moves an image by a fractional number

of pixels in x and y direction using bilinear interpolation.

The function uses the following parameters:

src : pointer to source image
dst : pointer to destination image
mx : movement vector x-component, mx >0 : movement to right
my : movement vector y-component, my >0 : downward movement
bgnd : background color

The movement vector (mx, my) is added to the start of source image. The
image is then copied using bilinear interpolation. If (mx, my) = (0, 0), the result
of the operation is the same as for the copy() function.

The resulting image always has the dimensions of the destination image.
Missing areas are set to bgnd. The function also performs a bilinear
interpolation between edges of the source image and the background color
where applicable.

 It is possible to use the function in-place if my<0, otherwise the result is not
defined.

Returned Values : error codes

-1 : one of the image variables is NULL
-2 : memory allocation error

ExtensionLib.doc – Extension Library Manual

© 1996-2009 Vision Components GmbH Ettlingen, Germany

7

memory dst->dx or less

see also rotate90l()

affine_image_ general affine image transformation
transform

synopsis I32 affine_image_transform(image *src,

image *dst, float a[2][2], float t[2], U8 bgnd)

description This function performs a general affine image transformation on the source

image and outputs the result to the destination image. The function uses
bilinear interpolation.

The function uses the following parameters:

 src : source image variable
 dst : destination image variable
 a[2][2]: inverse 2D transformation matrix
 t[2] : inverse 2D translation vector
 bgnd : background grey value

The resulting image always has the dimensions of the destination image.
Missing areas are set to bgnd.

Please be aware, that the function needs the inverse transformation matrix
and translation vector as an input.

It is not possible to use the function in-place, i.e. source and destination
images must not overlap.

memory none

see also matrix()

affine_image_ general affine image transformation
transform2

synopsis I32 affine_image_transform2(image *src,

image *dst, float a[2][2], float t[2], U8 bgnd)

description Same as affine_image_transform() but with (slow) floating-point

calculation. It is recommmended to use function
affine_image_transform2() instead.

ExtensionLib.doc – Extension Library Manual

© 1996-2009 Vision Components GmbH Ettlingen, Germany

8

calc_rotation_matrix calculate affine rotation matrix

synopsis void calc_rotation_matrix(float angle,

float cx, float cy, float a[2][2], float t[2])

description This function calculates an inverse affine transformation matrix and translation

vector for a clockwise rotation. The result matrix and vector may be used for
the functions affine_image_transform() or
affine_image_transform2().

 The function uses the following parameters:

 angle : angle for clockwise rotation [degrees]
 cx : rotation center x-coordinate
 cy : rotation center y-coordinate
 a[2][2] : inverse 2D transformation matrix (result)
 t[2] : inverse 2D translation vector (result)

memory none

see also affine_image_transform(),calc_rotation()

calc_rotation calculate affine rotation matrix using angle and 2 points

synopsis void calc_rotation(float angle, point *p,

point *target_p, float a[2][2], float t[2])

description This function calculates an inverse affine transformation matrix and translation
vector for a clockwise rotation. The result matrix and vector may be used for
the functions affine_image_transform() or
affine_image_transform2(). This function can be used if the angle of
the rotation is known as well as a point p in the original image and its mapping
in the target image.

 The function uses the following parameters:

 angle : angle for clockwise rotation [degrees]
 p : point in original image (x, y)
 target_p : target image of point p after rotation
 a[2][2] : inverse 2D transformation matrix (result)
 t[2] : inverse 2D translation vector (result)

memory none

see also affine_image_transform(), calc_rotation_matrix()

ExtensionLib.doc – Extension Library Manual

© 1996-2009 Vision Components GmbH Ettlingen, Germany

9

polar_image_ polar to cartesian image transformation
transform
synopsis I32 polar_image_transform(image *src,

image *dst, float t[2], U32 r0, U8 bgnd)

description This function calculates a bilinear interpolated transformation from polar
coordinates into cartesian coordinates.

The function uses the following parameters:

 src : pointer to source image
 dst : pointer to destination image
 t[2] : inverse 2D translation vector
 r0 : minimum radius for transform

bgnd : background grey value

applications This function may be used to unwrap circular barcode or characters written

e.g. on a CD-ROM or wafer.

memory none

see also affine_image_transform()

ExtensionLib.doc – Extension Library Manual

© 1996-2009 Vision Components GmbH Ettlingen, Germany

10

polar_image_ polar to cartesian image transformation
transform2
synopsis I32 polar_image_transform2(image *src,

image *dst, float t[2], U32 r0, U8 bgnd)

description Same as polar_image_transform() but with (slow) floating-point

calculation. It is recommmended to use function
polar_image_transform() instead.

mirror_hor mirror image horizontally

synopsis void mirror_hor(image *src, image *dst)

description The function mirror_hor() mirrors an image horizontally with respect to its

central axis. It is possible to use the function in-place, i.e. source and
destination images may be identical. In this case, the function uses a slightly
faster exchange-and-reverse routine.

If source and destination images are not identical but overlap, the result is not
defined.

The function mirrors the whole image if the dimensions of source and
destination image fulfil the following conditions:

src->dx = dst->dx
src->dy = dst->dy

If this is not the case, only a fraction of the source image is mirrored with the
following dimensions:

dx = min(src->dx, dst->dx)
dy = min(src->dy, dst->dy)

memory none

see also mirror_ver()

mirror_ver mirror image vertically

synopsis void mirror_ver(image *src, image *dst)

description The function mirror_ver() mirrors an image vertically with respect to its

central axis. It is possible to use the function in-place, i.e. source and
destination images may be identical. In this case, the function uses a slightly
faster exchange-and-reverse routine.

If source and destination images are not identical but overlap, the result is not
defined.

ExtensionLib.doc – Extension Library Manual

© 1996-2009 Vision Components GmbH Ettlingen, Germany

11

The function mirrors the whole image if the dimensions of source and
destination image fulfil the following conditions:

src->dx = dst->dx
src->dy = dst->dy

If this is not the case, only a fraction of the source image is mirrored with the
following dimensions:

dx = min(src->dx, dst->dx)
dy = min(src->dy, dst->dy)

memory none

see also mirror_hor()

xshear horizontal image shear

synopsis void xshear(image *src, float shear,
 image *dst, float offset, U8 bgnd)

description The function xshear() performs a horizontal image shear of the source

image by a shear factor of shear. A horizontal displacement offset offset
may be added. Pixels for which the corresponding source image is not
defined, are set to bgnd.

If source and destination images are not identical but overlap, the result is not
defined.

memory none

see also yshear()

ExtensionLib.doc – Extension Library Manual

© 1996-2009 Vision Components GmbH Ettlingen, Germany

12

threepoint_ three-point formula for affine transformations
calculate

synopsis I32 threepoint_calculate(

point *p0, point *p1, point *p2,
 point *q0, point *q1, point *q2,

float **a, float *t)

description The function threepoint_calculate() calculates the inverse affine

transformation matrix for 2 x 3 coordinate points.

When two patterns must be compared very accurately, e.g. in print inspection,
it is useful to match both patterns using affine transformation with subpixel
accuracy before comparing them. This function allows to compute the inverse
transformation matrix and displacement vector. Three known points are
necessary in the original image and their image points in the transformed
image (i.e. 6 in total).
These points may be chosen by binary blob analysis or correlation methods
as an example. For the affine transformation itself, always the inverse
transformation matrix and displacement vector is required as computed by the
function. If, for some reason, the non-inverse matrix is required, just exchange
the points p and q for the original and transformed image.

The function uses the following parameters:

p0, p1, p2 point coordinates for first image
q0, q1, q2 point coordinates for second image
a inverse 2D transformation matrix 2x2 (result)
t inverse 2D translation vector 2x1 (result)

points are defined by the following struct:

typedef struct /* coordinate point */

 {
 float x; /* x coordinate (float) */
 float y; /* y coordinate (float) */
 } point;

The function returns the standard error code, including ERR_SINGULAR. This
will be the case, if the three points are on a line.
Even if the function does not indicate a singular situation, it is not wise to have
all three points on a line.

recommendation Do not place the three points on a line

memory none

see also affine_image_transform(), calc_rotation_matrix()

ExtensionLib.doc – Extension Library Manual

© 1996-2009 Vision Components GmbH Ettlingen, Germany

13

lens_transform lens distortion correction

synopsis I32 lens_transform(image *src, image *dst,

point *center, float k3, U8 bgnd)

description The function lens_transform() performs a lens correction transformation.

Pincushion- and barrel-type distortions can be corrected. Distortions of this
type typically increase with the square of the distance to the optical
centerpoint.

The following parameters are used:

src source image
dst transformed destination image
center.x, center.y transformation centerpoint
k3 transformation parameter
bgnd background color

The transformation is performed using the following formula:

)
.
.

1000/31(
.
.

.'

.' 2

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−

ycentery
xcenterx

k
ycentery
xcenterx

ycentery
xcenterx

The sign and value of the parameter k3 determines the type of the distortion:

k3 = 0 no distortion
k3 > 0 pincushion type distortion
k3 < 0 barrel type distortion

Pixels for which the corresponding source image is not defined, are set to
bgnd.

memory none

see also lens_transform2()

ExtensionLib.doc – Extension Library Manual

© 1996-2009 Vision Components GmbH Ettlingen, Germany

14

lens_transform2 lens distortion correction, type 2

synopsis I32 lens_transform2(image *src, image *dst,

point *center, float f, float mag, U8 bgnd)

description The function lens_transform2() performs a lens correction for barrel-type
distortions.

The function corrects non-linear circular symmetric distortions based on a
universal model of the lens. The model assumes that the lens maps a part of a
sphere to the CCD-sensor. All the user needs to know is the focal length of
the lens in units of the sensor pixel size.
The model cannot be applied to telecentric lenses and some specially
corrected lenses and has to be approved for a specific lens. Also, it is possible
that focal length parameter for this routine deviates from the actual f-value.

The function uses the following parameters:

src source image
dst transformed destination image
center.x, center.y transformation centerpoint
f focal length parameter
mag magnification (1.0: no magnification)
bgnd background color

The transformation is performed using the following formula:

)(**
.
.

.'
.' 2rcorrectionmag

ycentery
xcenterx

ycentery
xcenterx

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−

The key parameter for the correction is f, namely the focal length of the lens
divided by the pixel size.

The following table lists the pixelsize for the different camera models:

Camera model Sensor pixelsize [µm]

VC4018, VC4038 ICX424 7.4 x 7.4

VC4016, VC4066 ICX204 4.65 x 4.65

VC4068 ICX205 4.65 x 4.65

VC4065 ICX415 8.3 x 8.3

VC4472 ICX274 4.4 x 4.4

VC4058 KAI-0340 7.4 x 7.4

SBC4012 MT9P031 2.2 x 2.2

For example, using a lens with a focal length of 6 mm together with a VC4472
camera would be:

f = 1000.0 * 6.0/4.4

The factor of 1000 is due to the fact that one mm equals 1000 µm.

ExtensionLib.doc – Extension Library Manual

© 1996-2009 Vision Components GmbH Ettlingen, Germany

15

The image can be magnified (mag > 1.0) or demagnified (mag < 1.0).
A tilt in the object plane (object plane not perpendicular to optical axis) can be
easily adjusted by setting the transformation centerpoint (center.x,
center.y) to some pixel outside the CCD midpoint, since this effectively
rotates the optical axis.

Pixels for which the corresponding source image is not defined, are set to
bgnd.

When called the first time, the function builds up a table for the correction
values. The memory for the table is automatically allocated and the table is
calculated, which may take some time. The table is kept in memory for further
use with the same parameters. If the parameters are changed, the old table
will be released and a new table will be set up.

To deallocate the table memory, the function

void deinit_lens_transform2()

should be called.

memory 4*(dst->dx – p->cx)*(dst->dy – p->cy) bytes, use function
 deinit_lens_transform2() to release memory

see also lens_transform()

ExtensionLib.doc – Extension Library Manual

© 1996-2009 Vision Components GmbH Ettlingen, Germany

16

2 Filter functions

isef infinite symmetric exponential filter (recursive)
isef_hor infinite symmetric exponential horizontal filter (recursive)
isef_ver infinite symmetric exponential vertical filter (recursive)
gauss recursive gauss filter
gauss_hor horizontal recursive gauss filter
gauss_ver vertical recursive gauss filter
gauss_fir non-recursive gauss filter 3x3, 5x5, etc.
gradient_2x2 vector gradient (robert’s cross)
gradient_3x3 vector gradient (sobel)
maxMxN moving maximum (dilation) filter
minMxN moving minimum (erosion) filter

isef infinite symmetric exponential filter (recursive)

synopsis I32 isef(image *src, image *dst, float b))

description The function isef() calculates the infinite symmetric exponential filter with

filter parameter b with 0.0 < b < 1.0. b defines the equivalent of the filter
kernel size for this recursive filter: the larger the value of b, the larger the
kernel size. Since this function is designed as a recursive filter, the execution
speed does not depend on the size of b.

 Remark: The function calls isef_hor() and isef_ver() in succession.

 The function returns the standard error code.

memory (dx*(dy+2)+2)/2 bytes of heap memory

see also isef_hor(), isef_ver()

isef_hor horizontal infinite symmetric exponential filter (recursive)

synopsis I32 isef_hor(image *src, image *dst, float b)

description The function isef_hor() calculates the horizontal infinite symmetric

exponential filter with filter parameter b with 0.0 < b < 1.0. b defines the
equivalent of the filter kernel size for this recursive filter: the larger the value of
b, the larger the kernel size. Since this function is designed as a recursive
filter, the execution speed does not depend on the size of b.

 The function returns the standard error code.

memory 2*(dx+1) bytes of heap memory

see also isef(), isef_ver()

ExtensionLib.doc – Extension Library Manual

© 1996-2009 Vision Components GmbH Ettlingen, Germany

17

isef_ver vertical infinite symmetric exponential filter (recursive)

synopsis I32 isef_ver(image *src, image *dst, float b))

description The function isef_ver() calculates the vertical infinite symmetric

exponential filter with filter parameter b with 0.0 < b < 1.0. b defines the
equivalent of the filter kernel size for this recursive filter: the larger the value of
b, the larger the kernel size. Since this function is designed as a recursive
filter, the execution speed does not depend on the size of b.

 The function returns the standard error code.

memory 2*(dx*(dy+2)+2) bytes of heap memory

see also isef(), isef_hor()

gauss recursive gauss filter

synopsis I32 gauss(image *src, image *dst, float sigma))

description The function gauss() calculates the recursive gauss filter with filter

parameter sigma with 0.0 < sigma < 5.0. sigma defines the equivalent
of the filter kernel size (standard deviation) for this recursive filter: the larger
the value of sigma, the larger the kernel size. Since this function is designed
as a recursive filter, the execution speed does not depend on the size of
sigma.

 Remark: The function calls gauss_hor() and gauss_ver() in

succession.

 The function returns the standard error code.

memory 2*(dx*(dy+6)+1) bytes of heap memory

see also gauss_fir(), gauss_hor(), gauss_ver()

ExtensionLib.doc – Extension Library Manual

© 1996-2009 Vision Components GmbH Ettlingen, Germany

18

point spread funtions for different values of sigma

sigma = 0.625

000: 00
001: 00
002: 00
003: 00
004: 00
005: 00
006: 00
007: 00 00 00 00 00 00 00 00 00 01 01 01 00 00 00 00 00 00 00 00 00
008: 00 00 00 00 00 00 00 00 02 05 07 05 02 00 00 00 00 00 00 00 00
009: 00 00 00 00 00 00 00 01 05 0e 16 0e 05 01 00 00 00 00 00 00 00
010: 00 00 00 00 00 00 00 01 07 16 23 16 07 01 00 00 00 00 00 00 00
011: 00 00 00 00 00 00 00 01 05 0e 16 0e 05 01 00 00 00 00 00 00 00
012: 00 00 00 00 00 00 00 00 02 05 07 05 02 00 00 00 00 00 00 00 00
013: 00 00 00 00 00 00 00 00 00 01 01 01 00 00 00 00 00 00 00 00 00
014: 00
015: 00
016: 00
017: 00
018: 00
019: 00
020: 00

sigma = 1.0

000: 00
001: 00
002: 00
003: 00
004: 00
005: 00
006: 00 00 00 00 00 00 00 00 01 01 01 01 01 00 00 00 00 00 00 00 00
007: 00 00 00 00 00 00 00 01 02 03 03 03 02 01 00 00 00 00 00 00 00
008: 00 00 00 00 00 00 01 02 04 05 06 05 04 02 01 00 00 00 00 00 00
009: 00 00 00 00 00 00 01 03 05 08 09 08 05 03 01 00 00 00 00 00 00
010: 00 00 00 00 00 00 01 03 06 09 0b 09 06 03 01 00 00 00 00 00 00
011: 00 00 00 00 00 00 01 03 05 08 09 08 05 03 01 00 00 00 00 00 00
012: 00 00 00 00 00 00 01 02 04 05 06 05 04 02 01 00 00 00 00 00 00
013: 00 00 00 00 00 00 00 01 02 03 03 03 02 01 00 00 00 00 00 00 00
014: 00 00 00 00 00 00 00 00 01 01 01 01 01 00 00 00 00 00 00 00 00
015: 00
016: 00
017: 00
018: 00
019: 00
020: 00

sigma = 1.5

000: 00
001: 00
002: 00
003: 00
004: 00 00 00 00 00 00 00 00 00 01 01 01 00 00 00 00 00 00 00 00 00
005: 00 00 00 00 00 00 00 01 01 01 01 01 01 01 00 00 00 00 00 00 00
006: 00 00 00 00 00 01 01 01 01 02 02 02 01 01 01 01 00 00 00 00 00
007: 00 00 00 00 00 01 01 02 02 03 03 03 02 02 01 01 00 00 00 00 00
008: 00 00 00 00 01 01 01 02 03 03 04 03 03 02 01 01 01 00 00 00 00
009: 00 00 00 00 01 01 02 03 03 04 04 04 03 03 02 01 01 00 00 00 00
010: 00 00 00 00 01 01 02 03 04 04 05 04 04 03 02 01 01 00 00 00 00
011: 00 00 00 00 01 01 02 03 03 04 04 04 03 03 02 01 01 00 00 00 00
012: 00 00 00 00 01 01 01 02 03 03 04 03 03 02 01 01 01 00 00 00 00
013: 00 00 00 00 00 01 01 02 02 03 03 03 02 02 01 01 00 00 00 00 00
014: 00 00 00 00 00 00 01 01 02 02 02 02 02 01 01 00 00 00 00 00 00
015: 00 00 00 00 00 00 00 01 01 01 01 01 01 01 00 00 00 00 00 00 00
016: 00 00 00 00 00 00 00 00 01 01 01 01 01 00 00 00 00 00 00 00 00
017: 00
018: 00
019: 00
020: 00

ExtensionLib.doc – Extension Library Manual

© 1996-2009 Vision Components GmbH Ettlingen, Germany

19

gauss_hor horizontal gauss filter (recursive)

synopsis I32 gauss_hor(image *src, image *dst, float sigma)

description The function gauss_hor() calculates the horizontal recursive gauss filter

with filter parameter sigma with 0.0 < sigma < 5.0. sigma defines the
equivalent of the filter kernel size (standard deviation) for this recursive filter:
the larger the value of sigma, the larger the kernel size. Since this function is
designed as a recursive filter, the execution speed does not depend on the
size of sigma.

 The function returns the standard error code.

memory 2*(dx+1) bytes of heap memory

see also gauss(), gauss_ver()

gauss_ver vertical gauss filter (recursive)

synopsis I32 gauss_ver(image *src, image *dst, float sigma)

description The function gauss_ver() calculates the vertical recursive gauss filter with

filter parameter sigma with 0.0 < sigma < 5.0. sigma defines the
equivalent of the filter kernel size (standard deviation) for this recursive filter:
the larger the value of sigma, the larger the kernel size. Since this function is
designed as a recursive filter, the execution speed does not depend on the
size of sigma.

 The function returns the standard error code.

memory 2*(dx*(dy+6)+1) bytes of heap memory

see also gauss(), gauss_hor()

ExtensionLib.doc – Extension Library Manual

© 1996-2009 Vision Components GmbH Ettlingen, Germany

20

gauss_fir non-recursive gauss filter

synopsis I32 gauss_fir(image *src, image *dst, float sigma)

description This is the non-recursive version of the gauss low-pass filter. sigma is the

standard deviation of the filter.

sigma Filter size
0.391 3x3
0.625 5x5
0.812 7x7

 Values for sigma between the values in the table are allowed. The function

switches to whatever filter size comes closer to the value of sigma.

 The function returns the standard error code.

see also gauss()

gradient_2x2 vector gradient (robert’s cross)

synopsis I32 gradient_2x2(image *src, image *dst)

description The function gradient_2x2() calculates the vector gradient, i.e. a gradient

with separate magnitude and direction components for the source image src.
The destination image dst is therefore of type IMAGE_VECTOR. A 2x2 robert’s
cross type filter is used. The directional component has values in the range of
[0..256] corresponding to angles between 0 and 360 degrees according to the
following table.

0xe0 0x00 0x20
0xc0 xx 0x40
0xa0 0x80 0x60

Directions of an edge are defined normal to the edge pointing from the dark
side to the bright side.

 The function returns the standard error code.

The function requires a large table for the calculation which can be initialized
using the function

I32 init_gradient_2x2(),

which allocates memory for the table and initializes it with the proper values. It
returns the standard error code.

To deallocate the memory, the function

void deinit_gradient_2x2()

ExtensionLib.doc – Extension Library Manual

© 1996-2009 Vision Components GmbH Ettlingen, Germany

21

should be used.

gradient_2x2() also works, if init_gradient_2x2() is not called
beforehand. It does the memory allocation and initialisation, but this may take
some time, the first time the function is called, so the user might like to do the
initialisation at the time when the program starts to guarantee equal
processing times.

memory 256 KB of heap memory

see also gradient_3x3(), robert()

gradient_3x3 vector gradient (sobel)

synopsis I32 gradient_3x3(image *src, image *dst)

description The function gradient_3x3() calculates the vector gradient, i.e. a gradient

with separate magnitude and direction components for the source image src.
The destination image dst is therefore of type IMAGE_VECTOR. A 3x3 sobel
type filter is used. The directional component has values in the range of
[0..256] corresponding to angles between 0 and 360 degrees according to the
following table.

0xe0 0x00 0x20
0xc0 xx 0x40
0xa0 0x80 0x60

Directions of an edge are defined normal to the edge pointing from the dark
side to the bright side.

 The function returns the standard error code.

The function requires a large table for the calculation which can be initialized
using the function

I32 init_gradient_3x3(),

which allocates memory for the table and initializes it with the proper values. It
returns the standard error code.

To deallocate the memory, the function

void deinit_gradient_3x3()

should be used.

gradient_3x3() also works, if init_gradient_3x3() is not called
beforehand. It does the memory allocation and initialisation, but this may take
some time, the first time the function is called, so the user might like to do the
initialisation at the time when the program starts to guarantee equal
processing times.

memory 256 KB of heap memory

see also gradient_2x2(), sobel()

ExtensionLib.doc – Extension Library Manual

© 1996-2009 Vision Components GmbH Ettlingen, Germany

22

maxMxN moving maximum (dilation)) filter

synopsis I32 maxMxN(image *src, image *dst, I32 mx, I32 my)

description The function maxMxN() calculates the moving maximum filter (grey value

dilation) with a filter kernel of size (mx, my). It is possible to set either mx or
my to one, in which case a linear horizontal or vertical structuring element is
used.

 It is not possible to use this function in-place, i.e src and dst must be

different. The exection time is independent of the mask size

 The function returns the standard error code.

memory dx bytes of heap memory

see also minMxN()

minMxN moving minimum (erosion)) filter

synopsis I32 minMxN(image *src, image *dst, I32 mx, I32 my)

description The function minMxN() calculates the moving minimum filter (grey value

erosion) with a filter kernel of size (mx, my). It is possible to set either mx or
my to one, in which case a linear horizontal or vertical structuring element is
used.

 It is not possible to use this function in-place, i.e src and dst must be

different. The exection time is independent of the mask size

 The function returns the standard error code.

memory dx bytes of heap memory

see also maxMxN()

ExtensionLib.doc – Extension Library Manual

© 1996-2009 Vision Components GmbH Ettlingen, Germany

23

3 Edge detection

In an image, homogeneous regions, i.e. regions with slowly moving grey values are of minor
importance for the recognition process. Most of the information is located where grey values change
rapidly, i.e. in the edges of an image. Edge detection is a method to locate the relevant pixel changes
precisely and robustly in an image.

Edge detection is quite vulnerable to noise. Noise can be reduced using low-pass filters. For this very
reason, all edge detection algorithms essentially use some kind of low-pass filter as a preprocessing
stage. Some images have much noise, others not. The noise does not even have to stem from the
sensor or the camera electronic, e.g. if you imagine a rough or grinded surface on an industrial part,
the surface structure might be considered as noise, whereas for a similar part with a polished, shiny
surface, a rough structure might be a flaw that must be detected. Edge detection solves this conflict,
using low-pass filters with different filter size. So for an object with rough surface a large filter size
would be required to average over the surface structure; for the second example a smaller size of the
filter kernel would allow to detect even tiny flaws.

The edge detection itself is performed by calculating the first or second derivative of an image and
thresholding. For the detection of the edges, clever methods have been developed, to

- be as insensitive to noise as possible
- to precisely locate the edges
- to produce edges lines that are only one pixel wide (if possible)

One of the methods is a maximum search technique, that detects the maximum of the gradient image
either directly in the first order or as zero crossings in the second order derivative.

In the literature, quite a lot of edge detection algorithms have been suggested, the Marr-Hildredth,
Canny, Shen-Castan, SUSAN etc.

The algorithms mostly differ in their low-pass filter design. Some of them are even “optimum”
detectors, i.e. they give the best possible result – according to an edge criterion or an edge model.

In practice, the differences are not so much of importance. Since some of the techniques used require
quite a bit of computational effort, it is sometimes worth taking a somewhat sub-optimal approach and
saving a lot of computing time. We have therefore provided options that allow the user to tailor the
edge detector to the specific application.

There is a variety of low-pass filters to choose from. From a theoretical point of view, a Gauss filter
should be preferred. We have fixed-sized 3x3, 5x5 and 7x7 filters, as well as a recursive filter design
with variable size. For edge binarization, there are 3 modes available. For BinMode=0 gradient values
below MinContrast are set to zero, all other edge grey values are kept without binarization. The
second mode uses a locally variable threshold using moving average for binarization, and the third
mode uses a global threshold that is automatically calculated, so that a predefined percentage of all
pixels are above the threshold.

In addition, a technique called hysteresis thresholding may optionally be used. Here, two different
thresholds are used. The high threshold is used to detect the edge. Due to the high threshold, the
detected edge might have some holes. To close the holes, the low threshold is used. The edges are
then extended to those edges of the low-threshold image that connect to those of the high-threshold
image. The whole procedure produces high quality edge images with less noise than a simple
threshold.

ExtensionLib.doc – Extension Library Manual

© 1996-2009 Vision Components GmbH Ettlingen, Germany

24

edge calculate image edges

synopsis I32 edge(image *src, image *dst,

I32 type, float sigma, I32 BinMode,
I32 MinContrast, float fthresh, I32 binar_value)

description The function edge() performs edge detection on src. Various operating

modes can be set.

The function uses the following parameters:

src : source image of type = IMAGE_GREY
dst : destination image of type = IMAGE_GREY or IMAGE_VECTOR
type : type of low-pass filter

 sigma : low-pass filter size
 BinMode : binarization mode
 MinContrast : minimum contrast for binarization
 fthresh : threshold percentage (only used when BinMode=2)
 binar_value : binary value for edge output

If the destination image is of type IMAGE_VECTOR, the full directional
information of the edges image is provided.

The following types of low-pass filters are supported:

type Low pass filter Gradient routine
0 no filter gradient_2x2()
1 sobel gradient_3x3()
2 moving average gradient_2x2()
3 Gauss gradient_2x2()
4 Gauss FIR gradient_2x2()
5 ISEF gradient_2x2()

sigma specifies the size of the filter and therefore the amount of noise
reduction. For type<2, sigma is not used. For type=2, we have
kx=ky=sigma for the moving average filter. See documentation of avgm for
further information. For type=3 and 4, see documentation of the functions
gauss() and gauss_fir() for the description of sigma. For type=5, we
have b=sigma. See documentation of the function isef() for further
information. Please note, that in this case the value of sigma must be less
than 1.0.

type Low pass filter sigma
2 moving average kx=ky=sigma
3 Gauss 0.0 < sigma <= 5.0
4 Gauss FIR sigma = 0.391/0.625/0.812
5 ISEF 0.0 < b=sigma < 1.0

edge() will return ERR_PARAM, if the above limitations for sigma are violated.

ExtensionLib.doc – Extension Library Manual

© 1996-2009 Vision Components GmbH Ettlingen, Germany

25

The following binarization modes are supported:

BinMode mode hysteresis threshold
0 no binarization n/a
1 VC style no
2 Canny style no
-1 VC style yes
-2 Canny style yes

If BinMode=0, edge values below MinContrast are still set to zero. For
BinMode=1, the edge image is subtracted from a 3x3 moving average filter.
All pixels above MinContrast are set to binar_value. If hysteresis
threshold is selected, the high threshold is MinContrast, the low threshold is
MinContrast/4.

For BinMode=2, the internal global threshold thr for the edge image is
automatically computed so that always a certain percentage of all pixels,
fthresh, of the gradient image is above the computed threshold.
Reasonable values for fthresh are between 0.05 (5 %) and 0.20 (20 %).
The automatic threshold also never falls below MinContrast. If hysteresis
threshold is selected, the high threshold is thr, the low threshold is thr/4.

return values The function returns the standard error code. For example, ERR_PARAM is
returned, if the values for sigma and fthresh are outside the following
range:
a) BinMode = 2 AND 0.0 <= fthresh < 1.0
b) type = 3 AND 0.0 < sigma <= 5.0
c) type = 5 AND 0.0 < sigma < 1.0

Since edge() calls the functions gradient_2x2() or
gradient_3x3()depending on the value of type, the necessary tables
should be initialized using the functions

I32 init_gradient_2x2() or
I32 init_gradient_3x3()

To deallocate the memory, the functions

void deinit_gradient_2x2() or
void deinit_gradient_3x3()

should be used.

macros since edge() has quite a few options, there are the following macros to
simplify the use:

edge_canny(src, dst, binar_value)
edge_fast(src, dst, binar_value)
edge_sobel(src, dst, binar_value)

memory 256 KB of heap memory

see also gradient_2x2(), sobel()

ExtensionLib.doc – Extension Library Manual

© 1996-2009 Vision Components GmbH Ettlingen, Germany

26

4 Programs for gray scale correlation

vc_corr2 small kernel correlation routine / extended search area + extended kernel

synopsis I32 vc_corr2(image *a, image *b, I32 mcn,

I32 mcr, I32 *x0, I32 *y0)

description The function vc_corr2() calculates the normalized gray scale correlation

function (NCF) of an image variable a with respect to a correlation kernel or
sample b.

NCF may be a useful tool to find a given pattern (sample) in an image. The
search result depends heavily on the rotation and the size of the pattern. If
more than one pattern similar to the sample is present, the one with the
closest match is found. vc_corr2() is intended for use with small kernels and
small images.

Valid kernel sizes must comply to kx*ky <= 1024, e.g. 32x32 or 16x64.
The size of the image (dx,dy) is only limited by heap memory (see below). A
good idea is to zoom down sample and image to be searched in using
(multiple) pyramid() operation(s).

mcn is the minimum required contrast. For mcn=0 the function will find the
pattern regardless of its contrast. This may result in false pattern detections in
almost homogeneous images where no patterns are present. Therefore a
certain minimum contrast is recommended. (local contrast is defined as the
variance of gray values in an image region with the size of the kernel)

mcr is the minimum required correlation coefficient. Values for mcr are in the
range [0..1024] with 0: no correlation and 1024: absolute identity. Negative
correlation coefficients (inverse image) are not supported.

vc_corr2() returns the correlation coefficient for the pattern found. If no
pattern is found (due to low contrast or low correlation) it will return ERR_CORR
(-100).
The function also returns the x0 and y0 coordinates of the closest match.
If the function detects a format error (e.g. kernel > image or kernel > 1024
pixels), it will return ERR_FORMAT.

memory 8*(dx-kx+1) bytes of heap memory

see also vc_corr0(), vc_corr3()

ExtensionLib.doc – Extension Library Manual

© 1996-2009 Vision Components GmbH Ettlingen, Germany

27

vc_corr3 small kernel correlation routine / 32bit image output

synopsis I32 vc_corr3 (image *src, image *smp,
 image *dst32, I32 mcn)

description The function vc_corr3() calculates the normalized gray scale correlation

function (NCF) of an image variable src with respect to a correlation kernel or
sample smp and stores the resulting correlation image in dst32.

Image Variable Image Type
src IMAGE_GREY

smp IMAGE_GREY

dst32 IMAGE_GREY32

NCF may be a useful tool to find a given pattern (sample) in an image. The
search result depends heavily on the rotation and the size of the pattern. If
more than one pattern similar to the sample is present, this will be reflected in
the destination image by several high values. The closest match will have the
highest value in the correlation image. vc_corr3() is intended for use with
small kernels and small images.

Valid kernel sizes must comply to kx*ky <= 1024, e.g. 32x32 or 16x64.
The size of the image (dx,dy) is only limited by heap memory (see below). A
good idea is to zoom down sample and image to be searched in using
(multiple) pyramid() operation(s).

mcn is the minimum required contrast. For mcn=0 the function will find the
pattern regardless of its contrast. This may result in false pattern detections in
almost homogeneous images where no patterns are present. Therefore a
certain minimum contrast is recommended. If the minimum contrast is not
found, the resulting correlation value will be set to zero.

vc_corr3() produces correlation coefficients unnormalized by the search
pattern. In order to get normalized correlation values in the range of [0..1023],
the following formula may be used:

 nc = (float) corr_result * (float) contr3(smp) / 4194304.0

where corr_result is one element of the destination image dst32 and
contr3() is a function that calculates the inverse contrast for the sample
image.

 The function returns the standard error format, e.g. ERR_TYPE for
 incompatible types of the source and destination images or ERR_FORMAT if
 the sizes of the images are not within the range (e.g. kernel > image or kernel
 > 1024 pixels).

memory 8*(dx-kx+1) bytes of heap memory

see also vc_corr0(), vc_corr2()

ExtensionLib.doc – Extension Library Manual

© 1996-2009 Vision Components GmbH Ettlingen, Germany

28

corrcheck calculate correlation coefficient for two small images

synopsis float corrcheck(image *a, image *b)

description The function corrcheck() calculates the normalized gray scale correlation

coefficient (NCF) for the two images a and b. Both images must have the
same size. The calculation is performed with maximum possible accuracy
using integer and floating-point calculations internally wherever appropriate.

 The result is in the range of [-1.0, +1.0]. A value of +1.0 indicates a complete

correlation, i.e. identity (except for differences in brightness and contrast). A
value of -1.0 also indicates a complete correlation but with inverse contrast.

 For comparison of the result with correlation coefficients used by the functions

vc_corr0() and vc_corr2(), the following conversion may be helpful:

 corrf = corrcheck(a, b) * 1024;
 corr = (I32)((corrf > 0.0) ? corrf + 0.5 : 0.0);

Valid image sizes must comply to kx*ky <= 1024, e.g. 32x32 or 16x64.

 nc = (float) corr_result * (float) contr3(smp) / 4194304.0

where corr_result is one element of the destination image dst32 and
contr3() is a function that calculates the inverse contrast for the sample
image.

 The function returns the standard error format, i.e ERR_FORMAT if
 the sizes of the images are not within the range (e.g. kernel != image or kernel
 > 1024 pixels).

memory none

see also vc_corr0(), vc_corr2()

ExtensionLib.doc – Extension Library Manual

© 1996-2009 Vision Components GmbH Ettlingen, Germany

29

5 Programs for processing binary images in (unlabelled)
run length code

rlcmkbit create run length code of bitplane for an image variable
rlc2 logical functions of 2 images in run length code

rlcmkbit create run length code of bitplane for an image variable

synopsis U16 *rlcmkbit(image *a, I32 bit, U16 *rlc, I32 size)

description The function rlcmkbit() creates run length code for the image variable

a and stores it in memory. bit indicates the bitplane for which the run length
code is created. It should be a power of two.
A pixel with the corresponding bit being set (pixel & bit != 0) is
interpreted as white, otherwise as black.

 rlc is the starting address at which the RLC is stored in memory, size is the
number of words in memory available for the RLC. If there is not enough
space here, creation of the RLC is aborted and the function returns NULL.

 This function returns a pointer (U16 *) to the next memory address which is

not yet written with RLC. The pointer is aligned to the next integer address. In
case of error, it returns NULL.

see also rlcmk(), rlcout()

memory none

rlc2 logical functions of two images in run length code

synopsis U16 *rlc2(U16 *rlca, U16 *rlcb, U16 *dest,
 U16 * (*func)())

description The function rlc2()makes it possible to calculate any functions of two run

length coded images.
 rlca and rlcb pass the memory address of both RLCs. The memory

address of the resulting RLC is passed with dest. dest must be different
from rlca and rlcb (no in-place operations allowed !)

 The RLCs to be linked must have the identical format (dx, dy). If this is not the
case, then the function returns NULL.

 On success, the function rlc2() returns the next not yet written memory
address for the resulting RLC dest (integer aligned).

 For execution, it does not matter if the RLC is labelled or unlabelled. In both
cases, the result is an unlabelled RLC.

 A pointer to the basic function to be executed specifies the nature of the
function.

ExtensionLib.doc – Extension Library Manual

© 1996-2009 Vision Components GmbH Ettlingen, Germany

30

The following macros are available:

 Call Basic function Operation

 rlcand(a, b, dest) rlc_andf() AND
 rlcor(a, b, dest) rlc_orf() OR
 rlcxor(a, b, dest) rlc_xorf() XOR
new: rlcnand(a, b, dest) rlc_nandf() NAND
new: rlcnor(a, b, dest) rlc_norf() NOR
new: rlcequiv(a, b, dest) rlc_equivf() EQUIV=NXOR

 Of course, you can write your own basic functions. Pass their address

(function pointer) to rlc2().

memory none

ExtensionLib.doc – Extension Library Manual

© 1996-2009 Vision Components GmbH Ettlingen, Germany

31

6 Programs for processing binary images in labelled run
length code

rlc_label segment run length code (object labelling)
rlc_qin object inclusion property for labelled RLC
rlc_nhls number of holes property for labelled RLC
rlc_arf RLC area filter for small objects
rlc_select RLC object selection with guide image
rlc_delete delete RLC objects using a selection list
rlc_moments calculate moments of order 0, 1, 2 for labelled RLC
mom_calc_cgx calculate center of gravity from moments (x-coordinate)
mom_calc_cgy calculate center of gravity from moments (y-coordinate)
mom_calc_angle calculate angle of inertial axis from moments (result in degrees)
mom_calc_rad calculate angle of inertial axis from moments (result in radiants)
mom_calc_ecc calculate object eccentricity from moments
mom_calc_ellipse_a calculate ellipse half-parameter a
mom_calc_ellipse_b calculate ellipse half-parameter b
mom_calc_phi1 calculate Hu moment 1
mom_calc_phi2 calculate Hu moment 2

ExtensionLib.doc – Extension Library Manual

© 1996-2009 Vision Components GmbH Ettlingen, Germany

32

rlc_label segment run length code (object labelling)

synopsis U16 *rlc_label(U16 *rlc, U16 *slc, I32 mode)

description The function rlc_label() segments the run length code stored starting at

the memory address rlc.
 A pointer to the object number information slc, which the function will output,

must also be passed to the function - enough memory must be available for
the memory needs of the SLC. (The SLC needs (size_of_rlc – 4) bytes of
memory)

mode indicates a certain neighborhood connectedness for the segmentation
according to the following table:

mode connectedness macro library
0 4/4 (standard) sgmt(rlc, slc)

label44(rlc, slc)
standard

1 8/8 label88(rlc, slc) extension
2 8/4 label84(rlc, slc) extension

3 4/8 label48(rlc, slc) extension

 A connectedness of 8/4 means that the white pixels must be 8-connected and

the black pixels must be 4-connected to form an object. The above macros
are available including the standard sgmt() function.

note Please note that since functions like rlc_qin() might produce nonsensical

results when called with RLC data of different connectedness, we recommend
using the standard 4/4 connectedness model (macro sgmt(rlc, slc)).

The slc pointer is stored in the run length code at address rlc and rlc+1. This
indicates a labelled RLC.

 The number of objects found and the object numbers for the individual RLC
segments are stored in the SLC.

 The object numbers begin at 0; a total of 32000 object numbers are allowed.
An “object number overrun“ occurs if this number is exceeded.

The return value of this function is the next free memory address (integer
aligned).
The function returns NULL in case of an error. This might be a licence error or
an object number overrun. In the latter case, the number of objects field in the
SLC is also set to zero.

memory 256000 bytes of heap memory (= 8 * 32000)

ExtensionLib.doc – Extension Library Manual

© 1996-2009 Vision Components GmbH Ettlingen, Germany

33

rlc_qin object inclusion property for labelled RLC

synopsis I32 rlc_qin(U16 *rlc, I32 qin[], U32 n)

description The function rlc_qin() computes the object inclusion property. It is

calculated, which object is contained by which other object. This topological
relationship is stored in the array qin[].

If an object touches more than one image boundary, this property cannot be
computed for this object. In this case, qin is set to -1 for this object.

The function uses the following parameters:

rlc : pointer to labelled RLC
qin : array for QIN values for each object (output)

 qin is an array of dimension n which must be
 allocated by the user
 n : size of qin[]

The function returns the number of objects on success or the standard error
code.

example qin[0] = -1 object 0 touches more than 1 image boundary
 qin[1] = 0 object 1 is inside object 0
 qin[2] = 1 object 2 is inside object 1
 qin[3] = 0 object 3 is inside object 0

memory 4*nobj*sizeof(int) bytes heap memory

see also rlc_nhls()

ExtensionLib.doc – Extension Library Manual

© 1996-2009 Vision Components GmbH Ettlingen, Germany

34

rlc_nhls number of holes property for labelled RLC

synopsis I32 rlc_nhls(U16 *rlc, U32 holes[], U32 n)

description The function rlc_nhls() computes the number of holes for all objects in

labelled RLC. Please be aware that even very small objects with a few pixels
are counted as holes. It is therefore recommended to clean the image with the
function rlc_arf() first.

 The function uses the following parameters:

rlc : pointer to labelled RLC
holes : array for number_of_holes value for each object (output)

 holes[] is an array of dimension n which must be
 allocated by the user
 n : size of holes[]

The function returns the number of objects on success or the standard error
code.

memory (4*nobj+ n)*sizeof(int) bytes heap memory

see also rlc_qin()

rlc_arf RLC area filter for small objects (works on labelled RLC)

synopsis I32 rlc_arf(U16 *src, U16 *dst, U32 min_area)

description The function rlc_arf() deletes all objects of the source RLC with an area

less than min_area. This can be used to drastically reduce the amount of
RLC entries and to speed up the following routines operating on RLC. The
function is intended to eliminate small objects. If the value for min_area is
larger than the horizontal size of the image, it may occur that objects touching
the left and right image boundaries must be deleted. In this case nonsensical
results may be produced.

The function uses the following parameters:

 src pointer to labelled source RLC

dst pointer to unlabelled destination RLC
min_area objects with an area less than min_area are deleted

Note, that the output RLC is unlabelled. It might therefore be necessary to
call sgmt() again for object labelling.
The function returns the number of objects on success or the (negative)
standard error code on error.

memory nobj*sizeof(int) bytes heap memory

see also rlc_mf()

ExtensionLib.doc – Extension Library Manual

© 1996-2009 Vision Components GmbH Ettlingen, Germany

35

rlc_select RLC object selection with guide image

synopsis I32 rlc_select(U16 *rlc, U16 *rlc2, I32 select[],

U32 n, I32 mode)

description The function rlc_select() is used for the selection of objects in a binary
image given by rlc with a second binary guide image rlc2. The guide image
defines with its white regions where object in the first image are selected.
Together with the function rlc_delete(), this functionality is sometimes
called morphological reconstruction.

The format of both RLCs (i.e. the size of the image in x and y) must be
identical, otherwise the function returns with ERR_RLCFMT.

The function uses the following parameters:

 rlc pointer to labelled source RLC

rlc2 pointer to unlabelled guide RLC
select[n] result array with values for each object indicating the

selection: 1: object selected 0: object not selected
n size of select = maximum number of objects
 that can be processed
mode selects the operating mode mode = 0: standard mode

mode = 1: black objects are ALWAYS marked as selected.

The function returns the number of objects on success or the standard error
code.

memory none

see also rlc_delete(), rlc_arf()

rlc_delete delete RLC objects using a selection list

synopsis I32 rlc_delete(U16 *src, U16 *dst, I32 select[])

description The function rlc_delete() deletes objects from an RLC using a selection

list. The source RLC must be labelled, whereas the result RLC is unlabelled.

The function uses the following parameters:

 src pointer to labelled source RLC

dst pointer to unlabelled destination RLC
select[n] selection array with values for each object indicating the

selection: != 0 : object selected 0: object not selected

The function returns the number of objects on success or the standard error
code.

memory none

see also rlc_delete(), rlc_arf()

ExtensionLib.doc – Extension Library Manual

© 1996-2009 Vision Components GmbH Ettlingen, Germany

36

rlc_moments calculate moments of order 0, 1, 2 for labelled RLC

synopsis I32 rlc_moments(U16 *rlc, moment *mom, U32 n)

description The function rlc_moments() calculates the centralized moments of order

0, 1 and 2 for the labelled runlength code rlc. The centralized moments
maybe used to calculate useful features present in the RLC. For example the
moment µ00 is equal to the total pixel area of the object. With moments µ10
and µ01, the center of gravity for the object can be calculated by dividing
these values by µ00. Higher moments may be used to calculate translation-,
rotation- and scaling-invariant object features.

 The output of the function is stored in the struct array mom. All values of this

struct are stored in our proprietary multi-precision integer format.
 Since there are additional functions available to calculate all meaningful

features, it is not necessary to use these values directly.

 The definition of the moment struct:

typedef struct /* centralized moments */
 {
 BITN mu00; /* order 0 */
 BITN mu10; /* order 1 */
 BITN mu01; /* order 1 */
 BITN mu20; /* order 2 */
 BITN mu11; /* order 2 */
 BITN mu02; /* order 2 */
 BITN mu30; /* order 3 */
 BITN mu21; /* order 3 */
 BITN mu12; /* order 3 */
 BITN mu03; /* order 3 */
 } moment;

Moments of order 3 in this struct are reserved for future use. The function
rlc_moments() only calculates moments up to the second order.

Input variables for the function:

rlc pointer to labelled RLC (input to the function)
mom array of struct (moment struct) / function output
n number of array elements in mom. The function checks wether this
 number is sufficiently high for all objects in the RLC. If not, the function
 returns with an error code.

On success, the function returns the number of objects in the RLC. This value
may be used to address the output struct array. The standard error code is
returned on error: RLC is unlabelled or it contains more objects than n.

memory nobj*(tbd) bytes heap memory
see also mom_calc_cgx(), mom_calc_cgy(), mom_calc_angle(),
 mom_calc_ecc(), mom_calc_phi1(), mom_calc_phi2()

ExtensionLib.doc – Extension Library Manual

© 1996-2009 Vision Components GmbH Ettlingen, Germany

37

mom_calc_cgx calculate center of gravity from moments
mom_calc_cgy

synopsis float mom_calc_cgx(moment *mom)
 float mom_calc_cgy(moment *mom)

description The functions mom_calc_cgx() and mom_calc_cgx() compute the x- and

y-coordinates of the center of gravity for the object with the centralized
moments given by mom. The output of the funtion is a float value with subpixel
accuracy.

memory none

see also rlc_moments()

mom_calc_angle calculate angle of inertial axis from moments (result in degrees)

synopsis float mom_calc_angle(moment *mom)

description The function mom_calc_angle() computes the angle of the inertial axis

(minimum moment of inertia) for the object with the centralized moments given
by mom. This may be used as the main object orientation, e.g. for robot
applications.

 The output of the function is a float value with subangle accuracy ranging from

0.0 to 179.9 degrees. 0 means, the object is oriented parallel to the
(horizontal) x-axis, 90 means it is parallel to the y-axis. The user must be
careful: Since the output does not cover the full range from 0 to 360 degrees,
it is not possible to differentiate mirrored positions of the object. The function
is also useless for objects with circular symmetry, e.g. for disks, squares and
the like. Use the function mom_calc_ecc(), to see if the object has some
kind of eccentricity which is necessary for a unique inertial axis.

memory none

see also rlc_moments(), mom_calc_rad()

ExtensionLib.doc – Extension Library Manual

© 1996-2009 Vision Components GmbH Ettlingen, Germany

38

mom_calc_rad calculate angle of inertial axis from moments (result in radiants)

synopsis float mom_calc_rad(moment *mom)

description The function mom_calc_rad() computes the angle of the inertial axis

(minimum moment of inertia) for the object with the centralized moments given
by mom. This may be used as the main object orientation, e.g. for robot
applications.

 The output of the funtion is a float value with subangle accuracy ranging from

0.0 to π. 0 means, the object is oriented parallel to the (horizontal) x-axis, π/2
means it is parallel to the y-axis. The user must be careful: Since the output
does not cover the full range from 0 to 2π, it is not possible to differentiate
mirrored positions of the object. The function is also useless for objects with
circular symmetry, e.g. for disks, squares and the like. Use the function
mom_calc_ecc(), to see if the object has some kind of eccenticity which is
necessary for a unique inertial axis.

memory none

see also rlc_moments()

mom_calc_ecc calculate object eccentricity from moments

synopsis float mom_calc_ecc(moment *mom)

description The function mom_calc_ecc() computes the eccentricity for the object with

the centralized moments given by mom. This may be used as the main object
orientation, e.g. for robot applications.

 The output of the funtion is a float value with ranging from 0.0 to 1.0. 0.0

means, the object is totally symmetric, like a disk or a square, 1.0 means the
object is totally eccentric, like a needle. The eccentricity for an ellipsoid with
diameter a and b, the eccentricity would be (a-b)/(a+b).

memory none

see also rlc_moments()

ExtensionLib.doc – Extension Library Manual

© 1996-2009 Vision Components GmbH Ettlingen, Germany

39

mom_calc_ellipse_a calculate ellipse half-parameters a and b
mom_calc_ellipse_b

synopsis float mom_calc_ellipse_a(moment *mom)

float mom_calc_ellipse_b(moment *mom)

description These functions calculate the half-parameters a and b of the equivalent ellipse
for the object with the centralized moments given by mom.

memory none

see also rlc_moments(), mom_calc_ecc()

mom_calc_phi1 calculate Hu moments
mom_calc_phi2

synopsis float mom_calc_phi1(moment *mom)
 float mom_calc_phi2(moment *mom)

description The functions mom_calc_phi1() and mom_calc_phi2() compute the first

two Hu moments.

With the definition:

η20 = µ20 / (µ00*µ00)
η11 = µ11 / (µ00*µ00)
η02 = µ02 / (µ00*µ00)

the first two Hu moments are defined as follows:

ϕ1 = η20 + η20

ϕ2 = (η20 - η20)* (η20 - η20) + 4*η11*η11

memory none

see also rlc_moments()

ExtensionLib.doc – Extension Library Manual

© 1996-2009 Vision Components GmbH Ettlingen, Germany

40

rl_ftr3 calculate object features in the labelled RLC (subpixel version)

synopsis I32 rl_ftr3(U16 *rlc, ftr *f, U32 n)

description The function rl_ftr3() calculates object features of all objects in the

labelled RLC.

 The following features are calculated:

 area: object area
 x_center: x-coordinate of the center of gravity
 y_center: y-coordinate of the center of gravity
 x_cf: x-coordinate of the center of gravity (subpixel)
 y_cf: y-coordinate of the center of gravity (subpixel)
 x_min: smallest x-coordinate
 x_max: largest x-coordinate
 y_min: smallest y-coordinate
 y_max: largest y-coordinate
 x_lst: last x-coordinate in the last line
 color: object color (0 = black, -1 = white)

 The maximum and minimum values of x and y define the bounding box

around the chosen object.
 The coordinates (x_lst,y_max) specify a point which can serve as the initial

value for contour following. The object pixels are guaranteed to be contiguous.
 In contrast to function rl_ftr2() which calculates the center of gravity only

with pixel resolution, the function rl_ftr2() calculates it also in subpixel
resolution and places the result in two additional variables in the data structure
which are not used otherwise.

 rlc is the start address of the labelled run length code in memory.

 f is a pointer to the feature list (here: a struct array), n is the maximum

number of objects, i.e. usually the dimension of the struct array.

 The struct used has the following structure:

 typedef struct
 {
 U32 area; /* object area */
 U32 x_center; /* x_center - normalized */
 U32 y_center; /* y_center - normalized */
 I32 x_min; /* x_min */
 I32 x_max; /* x_max */
 I32 y_min; /* y_min */
 I32 y_max; /* y_max */
 I32 x_lst; /* last x */
 I32 color; /* object color 0 = black */
 float x_cf; /* x_center, normalized, float*/
 float y_cf; /* y_center, normalized, float*/

 } ftr;

ExtensionLib.doc – Extension Library Manual

© 1996-2009 Vision Components GmbH Ettlingen, Germany

41

 A pointer to the struct array is passed to this function. The pointer need not be
initialized before you call this function.

 The struct array is provided with the correct features of all objects after the
function is called.

The function returns the standard error code or, if no error occurred , the
number of objects in the labelled RLC.

see also rl_area2(), rlc_feature(), rl_ftr2()

memory no heap space required

example
 U16 *rlc, *next;
 ftr f[100];

 next = rlcmk(&a, 128, rlc, 0x40000);
 next=sgmt(rlc,next);
 nobj=rl_ftr3(rlc, f, 100);

ExtensionLib.doc – Extension Library Manual

© 1996-2009 Vision Components GmbH Ettlingen, Germany

42

7 Miscellaneous Image Functions
get_component get image component
equalize equalize image
set_ovl_false_color set translucent overlay LUT to false color palette
set_translucent set translucent overlay LUT to fixed value
_to_value
display_directions display a directional image using overlay
mask_frame mask a frame with programmable frame width

get_component get image component

synopsis I32 get_component(image *src, image *dst, I32 comp)

description With this function it is possible to copy just one component out of a multi-
component image, e.g. a color or vector image. src is an image variable of
different types, like IMAGE_VECTOR or IMAGE_RGB, whereas dst must be of
type = IMAGE_GREY.

 The function returns the standard error code

 parameters:

 src source image variable, any type
 dst destination image variable, grey image type
 comp component to be copied = 0, 1, 2

memory none

see also copy()

equalize equalize image

synopsis I32 equalize(image *src, image *dst)

description In some cases, a grey image does not cover the complete range of grey
values from 0 to 255. With this function the range can be expanded to ease
the human interpretation of the image on a computer screen.

 First, maximum and minimum grey levels are calculated in the search image.
 The range between maximum and minimum is then expanded to values

between 0 and 255 using a lookup table.

 The function returns the standard error code

memory none

see also look()

ExtensionLib.doc – Extension Library Manual

© 1996-2009 Vision Components GmbH Ettlingen, Germany

43

set_ovl_false_color set translucent overlay LUT to false color palette

synopsis I32 set_ovl_false_color(I32 table)

description This function sets one of the translucent overlay tables to a color palette with
equal intensity and saturation and colors covering the complete spectrum

 table is the number of the translucent table (1, 2, 3); table 1 corresponds to
bit 0 in the overlay, table 2 to bit 2 and table 3 to bit 2.

 The function returns 0 on success and -1 on error.

set_translucent set translucent overlay LUT to fixed value
_to_value

synopsis I32 set_translucent_to_value(I32 t, I32 r, I32 g, I32 b)

description This function sets one of the translucent overlay tables to a fixed color defined
by r (red), g (green) and b (blue).

 t is the number of the translucent table (1, 2, 3); table 1 corresponds to bit 0

in the overlay, table 2 to bit 2 and table 3 to bit 2.

 The function returns 0 on success and -1 on error.

ExtensionLib.doc – Extension Library Manual

© 1996-2009 Vision Components GmbH Ettlingen, Germany

44

display_directions display a directional image using overlay

synopsis I32 display_directions(image *src, I32 thresh,

I32 startx, I32 starty)

description For the display of a directional image (e.g. from a vector gradient) a color
palette is quite useful. The input image variable must be of type
IMAGE_VECTOR.This function displays the directions using a false color
palette in the translucent overlay. In addition, a threshold may be selected for
the magnitude, i.e. all image pixels with a magnitude larger than the threshold
are displayed in false colors, all other pixels are black.

 The function copies the directions of the source image to a display area in

main display memory with identical size and coordinates given by (startx,
starty). In the overlay memory, the translucent bit planes 0 and 1 are used
for this feature. All other overlay planes are set to zero by this function.

 parameters:

 src source image variable, type = IMAGE_VECTOR
 thresh threshold for magnitude binarisation
 startx, starty left upper corner coordinate of display

note The logical pages for display and overlay must be set correctly for this

function.

memory none

mask_frame mask a frame with programmable frame width

synopsis void mask_frame(image *src, I32 sx0, I32 sx1,

I32 sy0, I32 sy1, I32 value)

description This function sets a frame inside the image src to the value value.

 parameters:

 src source image variable, type not checked
 sx0 frame size on left side
 sx1 frame size on right side
 sy0 frame size / top
 sy1 frame size / bottom
 value value that is written to frame

note The logical pages for display and overlay must be set correctly for this

function.

memory none

ExtensionLib.doc – Extension Library Manual

© 1996-2009 Vision Components GmbH Ettlingen, Germany

45

8 Programs for processing pixel lists

bestline calculate chi-square bestline for a pixellist
bestcircle calculate chi-square bestcircle for a pixellist
draw_line draw a line in normalized floatingpoint form
draw_circle draw a circle with window-clipping
clip perform window-clipping for coordinates in pixellist
translate perform translation of coordinates in pixellist
IntersectionPoints intersection of a line with image borders
PL_line_stats line statistics for pixel list
PL_line_ending line ending for pixel list

bestline calculate chi-square bestline for a pixellist

synopsis I32 bestline(I32 *xy, I32 N,

float *cx, float *cy, float *b)

description The function bestline() computes a line minimizing the sum of all

quadratic distances of the points in the pixellist to the line. Unlike other
methods, this function uses the shortest distance to the line (i.e. perpendicular
to the line).

 The resulting line is defined as:

 cx * x + cy *y – b = 0

 The function uses the following parameters:

 xy pointer to the pixellist, i.e. alternating x- and y-coordinates
 N number of points in pixellist
 cx pointer to result-parameter cx (float)
 cy pointer to result-parameter cy (float)
 b pointer to result-parameter b (float)

The pixels in the pixellist may have the full I32 coordinate range, the minimum
number of pixels in the list is 2. There is no upper limit. If N is less than 2, the
function returns ERR_PARAM, otherwise ERR_NONE (0).

memory none

see also bestcircle(), draw_line()

ExtensionLib.doc – Extension Library Manual

© 1996-2009 Vision Components GmbH Ettlingen, Germany

46

bestcircle calculate chi-square bestcircle for a pixellist

synopsis I32 bestcircle(I32 *xy, I32 N, float *px,

float *py, float *rad)

description The function bestcircle() computes a circle minimizing the sum of all

quadratic distances of the points in the pixellist to the circle. This function uses
the shortest distance to the circle (i.e. perpendicular to the circle).

 The resulting circle is defined as:

 x = floor (rad * sin(phi) + px + 0.5);
 y = floor (rad * cos(phi) + py + 0.5);

 The function uses the following parameters:

 xy pointer to the pixellist, i.e. alternating x- and y-coordinates
 N number of points in pixellist
 px pointer to result-parameter px (float)
 py pointer to result-parameter py (float)
 rad pointer to result-parameter radius (float)

(px, py) defines the centerpoint and rad the radius of the circle found.
Please make sure that the camera you use has a quadratic pixel architecture
or use affine transformation to get virtually quadratic pixels. Otherwise circles
in reality will be ellipses in image memory and the function will not be able to
make a proper fit.

The pixels in the pixellist may have a coordinate range of [-16384, +16383],the
minimum number of pixels in the list is 3, the maximum number is 65535. If
this range is exceeded, the function returns ERR_PARAM, otherwise ERR_NONE
(0). It is possible, that a singularity occurs within the calculation. This might be
the case, if the pixels in the pixellist do not define a circle but a line instead. In
this case, the function returns ERR_SINGULAR.

memory none

see also bestline()

ExtensionLib.doc – Extension Library Manual

© 1996-2009 Vision Components GmbH Ettlingen, Germany

47

draw_line draw a line in normalized floatingpoint form

synopsis I32 draw_line(image *a, float cx, float cy, float b,

I32 col, void (*func)())

description The function draw_line() draws a line in normalized floatingpoint form in

an image variable. The clipping area for the drawing is defined by the size of
the image variable. The drawing method is given by the rendering function
func().

 The line is defined as:

 cx * x + cy *y – b = 0

 The function uses the following parameters:

 a image variable used for drawing the line
 cx line-parameter cx (float)
 cy line-parameter cy (float)
 b line-parameter b = distance from origin (float)

It may turn out that the specified line does not cross the image field at all, in
this case, the function returns ERR_PARAM, otherwise ERR_NONE (0).

2 macros are available:

draw_lined(a, cx, cy, b, c) set pixel to value = c (wp_set32)
draw_linex(a, cx, cy, b, c) XOR pixel with c (wp_xor32)

memory none

see also bestline()

ExtensionLib.doc – Extension Library Manual

© 1996-2009 Vision Components GmbH Ettlingen, Germany

48

draw_circle draw a circle with window-clipping

synopsis I32 draw_circle(image *a, I32 px, I32 py,

I32 rad, I32 col, void (*func)())

description The function draw_circle() draws a circle with radius rad and center

point (px, py) in an image variable. The clipping area for the drawing is
defined by the size of the image variable. The drawing method is given by the
rendering function func().

 The function uses the following parameters:

 a image variable used for drawing the circle
 px center point x-coordinate
 py center point y-coordinate
 rad circle radius

The function returns ERR_NONE (0) on success, ERR_MEMORY, when there is
a memory allocation error.

2 macros are available:

draw_circled(a, px, py, r, c) set pixel to value = c (wp_set32)
draw_circlex(a, px, py, r, c) XOR pixel with c (wp_xor32)

memory (48 * rad) bytes of heap memory

see also bestcircle(), draw_line()

clip perform window-clipping for coordinates in pixellist

synopsis I32 clip(I32 N, I32 *xy_src, I32 *xy_dst,

I32 x_min, I32 x_max, I32 y_min, I32 y_max)

description The function clip() performs window-clipping for the (x, y) coordinates in

the pixellist. The coordinates are copied from xy_src to xy_dst, if they are
in a rectangle defined by x_min, x_max, y_min and y_max, i.e.

 x_min <= x < x_max and
 y_min <= y < y_max

 N is the number of coordinates in xy_src. The function returns the number of

coordinates in the result list xy_dst. It is allowed to use the function in-place,
i.e. xy_dst = xy_src.

memory none

ExtensionLib.doc – Extension Library Manual

© 1996-2009 Vision Components GmbH Ettlingen, Germany

49

translate perform translation of coordinates in pixellist

synopsis void translate(I32 N, I32 *xy_src,

I32 *xy_dst, I32 mx, I32 my)

description The function translate() performs a translation operation for the (x, y)

coordinatesin the pixellist xy_src. The vector (mx, my)is added to all co-
ordinates, the result is written to xy_dst.

 N is the number of coordinates in xy_src and xy_dst. It is allowed to use the

function in-place, i.e. xy_dst = xy_src.

memory none

IntersectionPoints intersection of a line with image borders

synopsis I32 IntersectionPoints(image *a, float cx, float cy,
 float b, I32 *x0, I32 *y0, I32 *x1, I32 *y1)

description This function calculates the intersection points of a line with the borders of an
image (image *a). The function uses the following parameters:

a : image variable
cx, cy, b : parameters for line in normalized vector format
 cx, cy are components of the unit vector normal
 to the line, b is the distance to the origin
x0, y0 : coordinatesof the first intersection point (output)
x1, y1 : coordinatesof the second intersection point (output)

 The intersection points are calculated in the following order:

 left, right, top, bottom

 The function returns ERR_NONE, if 2 intersection points could be calculated,
 otherwise it returns ERR_PARAM.

memory none

see also clip(), draw_line()

ExtensionLib.doc – Extension Library Manual

© 1996-2009 Vision Components GmbH Ettlingen, Germany

50

MarkCross draw cross into image

synopsis void MarkCross(image *img, I32 ix,

I32 iy, I32 color, I32 size)

description The function MarkCross() draws a cross with 2*size pixels and the grey
value color.

memory none

PL_line_stats line statistics for pixel list

synopsis I32 PL_line_stats(I32 *xy, I32 nr, vcline *line,

float *dmin, float *dmax, float *sigma)

description The function PL_line_stats() calculates some statistics for a line that
comes in two representations:

(1) as vcline *line in normalized vector representation
(2) as a pixel-list (I32 *xy)

The normalized vector representation could be the output of the function
bestline(), the line between the first and the last point of the list or any
other preferred line.
The pixel-list xy could be the result of the contour algorithm, a Hough-line,
extracted with the function GetHoughPixels(), or any other source.

The function parses through the points in the list and calculates the closest
distance to the theoretical line (vcline *line). It outputs the minimum
(dmin, should be a negative value or 0, representing a deviation on one side
of the line) and the maximum (dmax, should be a positive value or 0,
representing a deviation on the other side of the line) and the standard
deviation sigma, which is the square root of the sum of the squared
differences divided by the number nr of pixels in the list.

return value ERR_NONE

ExtensionLib.doc – Extension Library Manual

© 1996-2009 Vision Components GmbH Ettlingen, Germany

51

PL_line_ending line ending for pixel list

synopsis I32 PL_line_ending(I32 *xy, I32 nr, vcline *line,

I32 *imin, I32 *imax)

description The function PL_line_ending() calculates the first and the last pixel of the
pixel-list in the direction of vcline *line and outputs the index of the
corresponding coordinate. When the pixel-list is the result of a contour-
following or the output of the function GetHoughPixels(), the pixels in the
list are not ordered in general as a line. The function can also use arbitrary
pixel-list and output the minimum and maximum coordinate in a given
direction specified by vcline *line.

 The coordinate of the minimum and maximum pixels are then retrieved by

 I32 imin, imax, *xy;

I32 minx, miny, maxx, maxy;

PL_line_ending(xy, nr, line, &imin, &imax);

minx = xy[2*imin];

miny = xy[2*imin+1];

maxx = xy[2*imax];

maxy = xy[2*imax+1];

return value ERR_NONE

ExtensionLib.doc – Extension Library Manual

© 1996-2009 Vision Components GmbH Ettlingen, Germany

52

9 Geometric tools
LineIntersection calculate intersection point of two lines
PointDistance calculate Euclidean distance between two points
PointLineDistance calculate distance beween a point and a line
LinePerpendicular calculates a line perpendicualar to a given one through a point
LineParallel calculates a line parallel to a given one through a point
Norm calculates the norm (length) of a vector (point)
AngleP calculates the angle of a vector (point)
Angle calculates the angle of a line
LineAngle calculates the angle between two lines
LineParameters calculates the line parameters using two points

The basic data structures for geometric processing are:

typedef struct /* coordinate point */
 {
 float x; /* x coordinate (float) */
 float y; /* y coordinate (float) */
 } point;

typedef struct /* line */
 {
 float cx; /* cx, cy, b-parameters for */
 float cy; /* line in normalized */
 float b; /* vector form: */
 } vcline; /* (cx * x) + (cy * y) - b = 0 */

For lines the normal vector (cx, cy) should be normalized to 1, although the vcline-struct still
defines a line if this is not the case. b cannot be used as the distance from the origin to the line and
some trigonometric functions could have some problems. Please be aware, that even in the case of a
normalized vector, the representation is not unique, since all values could be replaced by their
negative, describing the very same line. All functions in this chapter use floating-point values and
floating-point calculations.

LineIntersection calculate intersection point of two lines

synopsis I32 LineIntersection(vcline *a, vcline *b, point *r)

description This function finds the intersection point of 2 lines given in the standard

normal form

cx * x + cy * y - b = 0

In case of parallel lines, the function returns an error (ERR_SINGULAR).

PointDistance calculate Euclidean distance between two points

synopsis float PointDistance(point *a, point *b)

description The function calculates the Euclidean distance between two points and
returns the result.

ExtensionLib.doc – Extension Library Manual

© 1996-2009 Vision Components GmbH Ettlingen, Germany

53

PointLineDistance calculate distance beween a point and a line

synopsis float PointLineDistance(point *p, vcline *l)

description This function calculates the distance beween a point and a line and returns

the result.

LinePerpendicular calculates a line perpendicualar to a given one through a point

synopsis void LinePerpendicular(point *p, vcline *l, vcline *r)

description This function calculates a line perpendicualar to a given one through a point.
 The result is stored as vcline *r.

LineParallel calculates a line parallel to a given one through a point

synopsis void LineParallel(point *p, vcline *l, vcline *r)

description This function calculates a line parallel to a given one through a point.
 The result is stored as vcline *r.

Norm calculates the norm (length) of a vector (point)

synopsis float Norm(point *a)

description This function calculates the norm or length of a vector in point representation
and returns the result as a float value.

AngleP calculates the angle of a vector (point)

synopsis float AngleP(point *a)

description This function calculates the angle between the horizontal x-axis and the vector
a and returns the result in radiants. A value of 0 is output for a horizontal
vector pointing right. The result increases for a clockwise rotation up to a
value of 2π (360deg) and is always positive.

Angle calculates the angle of a line

synopsis float Angle(vcline *a)

description This function calculates the angle between the horizontal x-axis and line a and

returns the result in radiants. A value of 0 is output for a horizontal line. The
result increases for a clockwise rotation up to a value of π (180deg) and is
always positive.

ExtensionLib.doc – Extension Library Manual

© 1996-2009 Vision Components GmbH Ettlingen, Germany

54

LineAngle calculates the angle between two lines

synopsis float LineAngle(vcline *a, vcline *b)

description This function calculates the angle between two lines a and b and returns the

result in radiants. A value of 0 is output if both lines are parallel. In all other
cases, the result is the angle that line a must be rotated clockwise to be
parallel to b.
The result increases for a clockwise rotation up to a value of π (180deg) and
is always positive.

LineParameters calculates the line parameters using two points

synopsis void LineParameters(point *p1, point *p2, vcline *line)

description This function calculates the line parameters for a line running through two

points. If the two points are too close together, (distance < 5.0e-7), all line
parameters will be set to 0.0.

ExtensionLib.doc – Extension Library Manual

© 1996-2009 Vision Components GmbH Ettlingen, Germany

55

10 Hough Transform
The Hough Transform is a tool to identify a certain class of shapes in a given image. It is mostly used
for finding lines, but more complex shapes like circles and ellipses may also be searched with special
versions of the Hough Transform. The general idea is to use an accumulator space and a voting
procedure.
The Hough Transform for lines uses the polar (or normal) representation of a line. The accumulator
space is 2-dimensional and has the following features

parameter description dimension size *) origin
ρ distance from origin horizontal sqrt(dx*dx+dy*dy)+1 centered
φ line angle vertical 128 top

*) the size for ρ is always rounded up to the next even number

In each column for ρ, there are 128 bins for φ, covering the range from 0° to 180°, which results in an
angular resolution of 1.4°.

The Hough Transform is typically applied to edge images. Although it is possible to use images with
grey levels as an input, it is recommended to set unused image pixels to zero, since this provides a
significant speed improvement. This results in a particularly good performance for binary images,
where the edge pixels are set to some arbitrary value in the range of 1..255 and all other pixels are
zero.

The Hough Transform can be applied to an image using the function HoughTransform(). For each
non-zero pixel of the input image with coordinates(x, y), the Hough Transform calulates the function

ρ = x * sin(φ) + y * cos(φ)

for all 128 values of the parameter φ. The corresponding bins in the accumulator space are
incremented by the grey value of the pixel (x, y).

If there are linear structures in the image, there will be corresponding peaks in the accumulator space
with a height (peak strength) proportional to the number of pixels of the line. It does not matter if the
line is solid, dotted or randomly distributed along its way, only the number of pixel counts for its
representation in accumulator space (Hough space).

The second main task is therefore to identify peaks in Hough Space. This is done by the function
FindHoughLine().

ExtensionLib.doc – Extension Library Manual

© 1996-2009 Vision Components GmbH Ettlingen, Germany

56

The following shows the control struct which selects the features of the Hough Transform and the line
finding algorithm:

typedef struct
{
 I32 HoughMode; /* Hough operating mode = 0-3 */
 I32 LineNumber; /* number of lines for output */
 I32 delta_phi; /* phi tolerance */
 I32 MinPix; /* threshold for number of pixels */
 I32 LineWidth; /* width of lines to be searched */
 I32 bestfit; /* bestfit line flag 1=bestfit */
 struct hlstruct *maxptr; /* pointer to active lines list */
 struct hlstruct *empty; /* pointer to empty line list */
 }
HoughControl;

Not all of the parameters are used in both HoughTransform() and FindHoughLine().

parameter description used in function: remark

HoughMode Hough operating mode both user input

LineNumber Number of lines requested FindHoughLine() user input

delta_phi see text both user input

MinPix see text FindHoughLine() user input

LineWidth see text FindHoughLine() user input

bestfit perform bestfit (1=yes, 0=no) FindHoughLine() user input

maxptr pointer to first element of output list FindHoughLine() set by HoughInit2()

empty reserved for internal use FindHoughLine() set by HoughInit2()

An important parameter for the function FindHoughLine() is MinPix. This is basically a threshold
for the Hough space, corresponding to the minimum number of pixels for a line. Unfortunately, due to
rounding errors and possibly to due to the different grey values in the original image, this value is far
from exact. There may be up to a factor of 2 difference to the correct number of pixels. So this value
must be set low enough, in order not to miss a line. On the other hand, if MinPix is set too low, the
routine must search through a large number of tiny peaks, wasting computing time.

Most real lines are not straight lines. To account for this and to robustly detect somewhat noisy, wavy
or disturbed lines, 2 parameter have been added to tune the search characteristics.

All pixels in the stripe with width of If α ≤ delta_phi, all pixel count for a
LineWidth count for a single line single line, otherwise multiple lines are
 output. Note that the condition on the left
 side must also be fulfilled.

α
LineWidth

ExtensionLib.doc – Extension Library Manual

© 1996-2009 Vision Components GmbH Ettlingen, Germany

57

LineWidth defines a channel of a certain width, where the pixels in the original image vote for this
line in Hough space.

delta_phi is the amount of angular tolerance for the line detection.

The accuracy for the detection of lines with reasonably good quality in the original image is about 0.2
degrees. If this is not enough, setting bestfit to 1 will force FindHoughLine() to calculate a least
squares fit for all lines. For this fit, only pixels in the area specified by LineWidth and with a direction
specified by delta_phi will be taken into account. As a result, outliers will not play a role for the
bestfit procedure. For the bestfit, pixels with a value ≠ 0 are used, pixels with value = 0 are ignored.
Therefore, it does not make much sense using grey images as an input, if bestfit = 1, unless
values below a certain threshold are set to zero. We recommend using binary images, when the bestfit
feature is selected.

It must be remarked, that the accuracy of the combined Hough- and bestline algorithms (sometimes
even without the bestline) is so high, that the geometric distortion of the lens used for taking the
picture might play an important role. This is certainly the case for wide angle lenses. If wide angle
lenses are required for the application, the use of a correcting geometric image transform before
performing the Hough Transform might be considered.

Since a number of functions work on the same data, unexpected behavior might result, if the operating
modes are changed between calls of those functions. It is therefore a good idea, to set the operating
modes in control at the beginning of the program and never change parameters afterwards. For
setting default values, you can use the function HoughDefaults().

In the following we present an example program:

#define BINAR_VALUE (1)

// allocate memory for the 32bit Hough image
ImageAllocate(&hough32, IMAGE_GREY32, HoughCalcDx(&src), 128);

// set defaults
HoughDefaults(&control);

// threshold for number of pixels in line
control.MinPix = 20 * BINAR_VALUE;

// allocate memory and initialize
HoughInit();
HoughInit2(&control);

// binarize image with 0 and 1
binarize(&src, &src, thr, 0, BINAR_VALUE);

// do the Hough Transform
HoughTransform(&src, &hough32, &control);

// search Hough space for lines
FindHoughLine(&hough32, &src, &control);

// get the number of elements in the list
nr = HoughRank(control.maxptr, HL_VALUE, 0);

// step through the list of lines and draw them in the original image
p = control.maxptr;

while(p != NULL)
 {
 draw_lined(&src, p->cx, p->cy, p->b, 255);
 p = p->next;
 }

// deallocate memory
HoughDeinit();
HoughDeinit2(&Control);
ImageFree(&Hough32);

ExtensionLib.doc – Extension Library Manual

© 1996-2009 Vision Components GmbH Ettlingen, Germany

58

If the program must work in a loop, we would have started the loop with the function binarize()
ending with the while-loop that draws the lines.

FindHoughLine() outputs its results as follows: After execution, the control->maxptr points to
the chained list of line descriptors, which have the following format:

typedef struct hlstruct
{
 struct hlstruct *next; /* pointer to next element in list */
 I32 state; /* internal state */
 I32 value; /* line detection value */
 I32 phi; /* line angle */
 I32 rho; /* distance from center of image */
 I32 strength; /* line detection strength */
 float cx; /* cx, cy, bparameters for */
 float cy; /* line in normalized */
 float b; /* vector form */
}
HLine;

next points to the next element in the list or to NULL for the last element in the list. value is the peak
value in Hough space for the line (with a fixpoint integer format of 28.4). phi and rho are the line
angle and distance from the origin, i.e. the variables φ and ρ of the Hough transform. The latter two
values are scaled by 256, i.e. they have the fixpoint integer format of 24.8 .

strength, like value is the number of pixels for the line multiplied with their grey-value, but it takes
into account all pixels in a stripe with width = LineWidth in the direction phi +/- delta_phi. It is
therefore a better characterization of the line. cx, cy and b are the parameters for the line in the
normalized vector form defined by

cx * x + cy * y – b = 0

The origin of the coordinate system is located at the upper left corner of the image variable src, like
usual for most functions, whereas the origin for phi and rho is right in the middle of src.

The line-list is sorted by the parameter value, highest value first.

We recommend using only the output parameters strength, cx, cy and b. The parameters value,
phi and rho are more for internal use inside the function. If the user selects the chi-square bestfit
feature, this also influences only cx, cy and b.

If the user prefers the list to be sorted according to their strength, this can be accomplished using
HoughSortLine().

ExtensionLib.doc – Extension Library Manual

© 1996-2009 Vision Components GmbH Ettlingen, Germany

59

HoughTransform Hough Transform for lines

synopsis I32 HoughTransform(image *src, image *hough32,

HoughControl *control)

description This function calculates the Hough Transform for the source image src. The
32bit image hough32 is the output of the function. Operating modes are
selected with control.

The function uses the following parameters:

src : image variable of type IMAGE_GREY or IMAGE_VECTOR
hough32 : Hough accumulator image of type IMAGE_GREY32
control : control struct; the following parameters used for this function:
HoughMode : operating mode, must be 0 or 3
delta_phi : +/- angular detection tolerance in units of 1.4 degrees

 The size of hough32 depends on the size of the input image src:

hough32->dx = sqrt(src->dx * src->dx + src->dy * src->dy) + 1

hough32->dy = 128

 hough32->dx is then rounded to the next higher even number. For

convenience, we provide the function

 I32 HoughCalcDx(image *src)

which returns the horizontal hough image size for a given source image src.

It is recommended to set HoughMode to 0 and to use an image of type
IMAGE_VECTOR. This allows you to make use of the parameter delta_phi
and also results in a considerable speed advantage. Setting HoughMode to 3
or using an image of type IMAGE_GREY as input, automatically sets
delta_phi to 64 (= +/- 64), essentially switching off the angular tolerance
feature.

The function requires some tables for the calculation which can be allocated
and initialized using the function

I32 HoughInit()

This function returns the standard error code. To deallocate the memory, the
function

void HoughDeinit()

should be used.

HoughTransform() also works, if HoughInit() is not called beforehand. It
does the memory allocation and initialisation, but this may take some time, the
first time the function is called, so the user might like to do the initialisation at
the time when the program starts to guarantee equal processing times.

ExtensionLib.doc – Extension Library Manual

© 1996-2009 Vision Components GmbH Ettlingen, Germany

60

HoughTransform() returns the standard error code. An error is detected
when:

a) the image variables do not have the proper type (ERR_TYPE)
b) hough32->dx < HoughCalcDx(src) (ERR_FORMAT)
c) hough32->dy ≠ 128 (ERR_FORMAT)
d) the function is out of memory (ERR_MEMORY)

memory (640 + 4*src->dx) bytes including HoughInit()

see also FindHoughLine()

FindHoughLine find lines in Hough Transform

synopsis I32 FindHoughLine(image *hough32, image *src,

HoughControl *control)

description This function searches the 32bit image hough32 for peaks representing lines
in the original image src. hough32 should be the result of the function
HoughTransform(). Operating modes are selected with control.

The function uses the following parameters:

hough32 : Hough accumulator image of type IMAGE_GREY32
src : image variable of type IMAGE_GREY or IMAGE_VECTOR
control : control struct; the following parameters used for this function:
HoughMode : operating mode, must be 0 or 3
delta_phi : +/- angular detection tolerance in units of 1.4 degrees
LineNumber : maximum number of output lines
MinPix : minimum number of pixels for line times grey value *)
LineWidth : width detection tolerance for lines
bestfit : perform chi-square bestfit (1=yes, 0=no)

*) MinPix is an approximate value for the minimum number of pixels in a line
multiplied with their pixel value. It is used as a threshold for speeding-up the
algorithm.

The function requires some heap memory for the storage of the line
descriptors and for some tables. The memory allocation and initialization
should be done using the functions

I32 HoughInit()
I32 HoughInit2(HoughControl *control)

Be sure to set the control struct control before calling HoughInit2(),
since the amount of memory allocated, depends on the parameter
LineNumber. This function returns the standard error code.

ExtensionLib.doc – Extension Library Manual

© 1996-2009 Vision Components GmbH Ettlingen, Germany

61

To deallocate the memory, the functions

void HoughDeinit()
void HoughDeinit2(HoughControl *control)

should be used.

FindHoughLine() also works, if HoughInit() and HoughInit2() is not
called beforehand. It does the memory allocation and initialization, but this
may take some time when the function is called for the first time, so the user
might like to do the initialization at the time when the program starts to
guarantee equal processing times.

The function outputs a chained list of line descriptors with the pointer (Hline
*)control->maxptr pointing to the start of the list. The list is sorted
according to the line parameter value.

FindHoughLine() returns the standard error code. An error is detected
when:

a) the image variables do not have the proper type (ERR_TYPE)
b) hough32->dx < HoughCalcDx(src) (ERR_FORMAT)
c) hough32->dx is odd (ERR_FORMAT)
d) hough32->dx < 96 (ERR_FORMAT)
e) hough32->dy ≠ 128 (ERR_FORMAT)
f) the function is out of memory (ERR_MEMORY)
g) parameters are out of range (ERR_PARAM)

The function has two internal error states which it may return on occasion:

h) internal out-of-memory state (ERR_HOUGH0). In this case, it might help to
increase LineNumber.
i) maximum iteration error (ERR_HOUGH1). This error can only occur, if the
control-struct is inconsistent for the functions HoughTransform() and
FindHoughLine() or otherwise some tables have been damaged.

remark FindHoughLine() changes the contents of hough32.

memory 640 bytes for HoughInit() tables

2*LineNumber*sizeof(HLine) bytes for HoughInit2()
 < 128 kBytes for FindHoughLine()routine

see also HoughTransform()

ExtensionLib.doc – Extension Library Manual

© 1996-2009 Vision Components GmbH Ettlingen, Germany

62

HoughDefaults set defaults for the Hough Transformation

synopsis void HoughDefaults(HoughControl *control)

description This function sets default values for the Hough transformation. The
parameters are set as follows:

 control->HoughMode = 0;
 control->LineNumber = 100;
 control->delta_phi = 5;
 control->MinPix = 5;
 control->LineWidth = 5;
 control->bestfit = 0;

memory none

see also HoughTransform(), FindHoughLine()

HoughSortLine sort line list according to different sorting criteria

synopsis void HoughSortLine(HLine **listptr, I32 offset)

description With this function the user can sort the line list according to different sorting
criteria. listptr is a handle for the line list and offset is the element
number in the struct. vclib.h provides a number of predefined values for
offset that you can choose from:

#define HL_VALUE (2)
#define HL_PHI (3)
#define HL_RHO (4)
#define HL_STRENGTH (5)

 as an example the line list is sorted according to line strength:

example HoughSortLine(&(control->maxptr), HL_STRENGTH);

 Please note, that HoughSortLine() might change the value of

control->maxptr if it needs to point to a different first element in the list

memory none

see also HoughRank()

ExtensionLib.doc – Extension Library Manual

© 1996-2009 Vision Components GmbH Ettlingen, Germany

63

HoughRank get number of lines above a certain value

synopsis I32 HoughRank(HLine *listptr, I32 offset, I32 value)

description With this function it is possible to get the number of lines with a value above

a certain threshold, e.g. the number of lines above a certain strength.
 Please note, that the lines have to be sorted first with the function

HoughSortLine() according to the selected criterion.

listptr is a pointer to the line list and offset is the element number in the
struct. vclib.h provides a number of predefined values for offset that you
can choose from:

#define HL_VALUE (2)
#define HL_PHI (3)
#define HL_RHO (4)
#define HL_STRENGTH (5)

 For the struct values that are always positive, namely line->value and
line->strength, calling HoughRank(, , 0) will return the total
number of lines in the list.

as an example the rank is computed according to line strength:

example HoughSortLine(&(control->maxptr), HL_STRENGTH);

count = HoughRank(control->maxptr, HL_STRENGTH, 200);

memory none

see also HoughSortLine()

GetHoughPixels extract xy-list from Hough source image

synopsis I32 GetHoughPixels(image *Src, HLine *line,

HoughControl *Control, I32 *xy)

description The Hough Transform can detect lines in an image which can consist of an
arbitrary set of pixels on a line. This function returns an exact list of the pixels
which contribute to the Hough line.

parameters Src : source image (IMAGE_VECTOR or IMAGE_GREY)

line : line descriptor with values for phi,cx,cy,b
Control : Hough Control struct (always use same values

 for all functions)
xy : xy co-ordinate list (result)

return values number of pixels found (positive value) or standard error return (negative)

memory 4*(dx + 2*dy + 4*max(dx, dy) + 2*width*(dx + dy) + 6)

bytes of heap memory

see also FindHoughLine()

ExtensionLib.doc – Extension Library Manual

© 1996-2009 Vision Components GmbH Ettlingen, Germany

64

11 Hough Transform for Circles
Similar to the Hough Transform for lines, it is possible to define a Hough Transform for circles. The
parameter space would be three-dimensional, since a circle is defined by three parameters: (x0, y0)
and r. This adds another order of magnitude for the memory space and computation time
requirements. In order to reduce memory space and computation time, we calculate the center (x0,
y0) of the circle first. The radius is calculated internally as a second step. We also find only one circle
at a time not a multiple, so it is up to the user to call the function as long as necessary to locate all the
relevant circles. This ensures rapid execution times.

Like the Hough Transform for lines, we use a 2-dimensional accumulator space and vote for the most
likely centerpoints of circles. In most cases the accumulator has the same dimensions as the original
image. The Hough-space may however be larger, which is important, if the user wants to locate circles
with centerpoints outside the active field.

Like the Hough Transform for lines, it is not important that the structures in the images are connected
full circles. They could be any part of a circle, like a half- or quatercircle, fully or partly connected.
However, unlike the transform for lines, it is not possible to detect circles consisting only of single
isolated pixels. Please also keep in mind, that if you only have a small segment of a circle smaller than
a quatercircle, the centerpoint must be extrapolated from the data, so centerpoint and radius will have
poor accuracy.

The Hough Transform for circles uses the following twodimensional accumulator space:

parameter description dimension size *) origin
x0 centerpoint x-position horizontal dx (default) left
y0 centerpoint y-position vertical dy (default) top

*) Hough space may be smaller or larger than the source image to extend or restrict the search area

The Hough Transform is typically applied to edge images. Although it is possible to use images with
grey levels as an input, it is recommended to set unused image pixels to zero, since this provides a
significant speed improvement. This results in a particularly good performance for binary images,
where the edge pixels are set to some arbitrary value in the range of 1..255 and all other pixels are
zero.

The Hough Transform for circles can be applied to an image using the function
HoughCircleTransform().

The function increments the bins in Hough space for the possible centerpoints of potential circles by
the grey value of the pixel (x, y).

If there are circular structures in the image, there will be corresponding peaks in the accumulator
space with a height (peak strength) proportional to the number of pixels on the circle. It does not
matter if the circle is solid, or randomly distributed along its way, only the number of pixel counts for its
representation in accumulator space (Hough space). Isolated pixels, however, cannot contribute to the
accumulator space.

ExtensionLib.doc – Extension Library Manual

© 1996-2009 Vision Components GmbH Ettlingen, Germany

65

The second main task is to identify peaks in Hough Space. This is done by the function
FindHoughCircle().

The following shows the control struct which selects the features of the Hough Transform and the
circle finding algorithm:

typedef struct
{
 I32 Thresh; /* threshold for binarization of source image */
 I32 MinRad; /* minimum radius for circle detection */
 I32 MaxRad; /* maximum radius for circle detection */
 I32 Error; /* error code */

 /* hough parameters (with relative hough position to the image) */
 I32 HoughX; /* relative starting point x-coordinate */
 I32 HoughY; /* relative starting point y-coordinate */

 I32 bestfit; /* 0: no bestcircle, 1: bestcircle approximation */

 + reserved additional parameters for internal use

}
HCirclePar;

The parameters of this struct should be kept constant throughout the detection cycle including the
initialization. Since additional internal parameters are used, the function
DefaultParHoughCircle()must be called first to initialize the struct to the default parameters. The
above parameters may then be changed to taylor the transform to specific requirements.
The function InitHoughCircle()must be called after the struct has been set to the correct values.
InitHoughCircle()initializes some tables depending on the values of MinRad and MaxRad, the
minimum and maximum radius defining the range of circles to be searched for.

(HoughX, HoughY) is the relative position of the Hough space in respect to the pixel space. The
default value is (0, 0). Together with same dimensions for pixel- and Hough space, this results in the
full coordinate range for the centerpoints of the circle. However, the centerpoints of the circle may
easily lie outside the original pixel range. In this case, the Hough space may be made larger and the
vector (HoughX, HoughY) should have negative values for HoughX and/or HoughY .

On the other hand, if it is clear from the application, that the centerpoints are restricted to a certain
range, the Hough space may be made smaller with the positive vector (HoughX, HoughY) pointing
to the left upper corner of the detection range.

This results in faster processing times since a smaller Hough Space must be searched.

Pixel Space

Hough Space

(HoughX, HoughY)

ExtensionLib.doc – Extension Library Manual

© 1996-2009 Vision Components GmbH Ettlingen, Germany

66

HoughCDefaults set Hough Circle parameters to default

synopsis I32 HoughCDefaults(HCirclePar *HCP)

description This function sets all the internal and external parameters of the control
structure HCP. The function must be executed before any other function for the
Hough Circle Transform may be called. The following values for the external
parameters are set:

 HCP->Thresh = 128; /* threshold for binarization */
 HCP->MinRad = 2; /* minimum radius for circle */
 HCP->MaxRad = 256; /* maximum radius for circle */
 HCP->Error = 0; /* error code */
 HCP->HoughX = 0; /* relative starting point x */
 HCP->HoughY = 0; /* relative starting point y */
 HCP->bestfit = 0; /* 0: no bestcircle appr. */

 The external parameters may be changed to some appropriate value
afterwards. Please be sure to keep the parameters fixed for a complete cycle
of the Hough Transform including the functions

 InitHoughCircle()

HoughCircleTransform()
FindHoughCircle()

return values standard error return

memory none

InitHoughCircle initialize Hough Circle Transform

synopsis I32 InitHoughCircle(HCirclePar *HCP)

description This function basically allocates and sets some tables necessary for the
Hough Circle Transform. The function may take several hundred milliseconds
depending on the value of MaxRad. Therefore it is recommended to call it only
once at the start of the user program. Please be aware, that depending on the
value of MaxRad the function may require some memory space. For the same
reason, the function must be called whenever the value of MaxRad changes.

return values standard error return

memory 4*(MaxRad+1)*(MaxRad+1) + 640 bytes of heap memory

see also DeinitHoughCircle()

ExtensionLib.doc – Extension Library Manual

© 1996-2009 Vision Components GmbH Ettlingen, Germany

67

DeinitHoughCircle deinitialize Hough Circle Transform

synopsis I32 DeinitHoughCircle(HCirclePar *HCP)

description This function releases memory space used for the tables and other structures

previously allocated by the functions

InitHoughCircle()
HoughCircleTransform()

return values standard error return

memory none

see also InitHoughCircle(), HoughCircleTransform()

HoughCircleTransform Hough Transform for circles

synopsis I32 HoughCircleTransform(image *ImgVec,

image *Hough32, HCirclePar *HCP)

description This function calculates the Hough Circle Transform for the source image

ImgVec. The 32bit image Hough32 is the output of the function. Operating
modes are selected with HCP.

parameters ImgVec : image variable of type IMAGE_VECTOR

Hough32 : Hough accumulator image of type IMAGE_GREY32
HCP : control struct; must be set with HoughCDefaults()

 ImgVec must be a vector image, typically as the result of function edge().

 The size of Hough32 is typically the same as for the source image ImgVec.

The function requires some tables for the calculation which can be allocated
and initialized using the function

InitHoughCircle()

This function returns the standard error code. To deallocate the memory, the
function

DeinitHoughCircle()

should be used.

return values HoughCircleTransform() returns the standard error code.
An error is detected when:

a) the image variables do not have the proper type (ERR_TYPE)
b) the function is out of memory (ERR_MEMORY)

ExtensionLib.doc – Extension Library Manual

© 1996-2009 Vision Components GmbH Ettlingen, Germany

68

memory

see also FindHoughCircle()

FindHoughCircle find circles in Hough Circle Transform

synopsis I32 FindHoughCircle(image *Hough32,

HCirclePar *HCP, HCircle *Circle)

description This function searches the 32bit image Hough32 for peaks representing
circles in the original image ImgVec. Hough32 should be the result of the
function HoughCircleTransform(). Operating modes are selected with
HCP. The result is placed in the struct Circle. Unlike the function
FindHoughLines(), this function returns the result one by one, i.e. it must
be called several times to find all circles in an image.

The function uses the following parameters:

Hough32 : Hough accumulator image of type IMAGE_GREY32
ImgVec : image variable of type IMAGE_VECTOR
HCP : control struct
Circle : result struct

The result struct has the following definition:

typedef struct hcstruct
{
 I32 x0; /* centerpoint x-value */
 I32 y0; /* centerpoint y-value */
 I32 r; /* circle radius */
 float x0f; /* centerpoint x-value float */
 float y0f; /* centerpoint y-value float */
 float rf; /* circle radius float */
 I32 strength;
}
HCircle;

The circle parameters are available both in integer (I32) and floating-point
format. The floating-point format is quite helpful when using the bestcircle
approximation (bestfit=1). The parameter strength gives an indication of the
amount of pixels in the image belonging to the circle found. Like for the linear
Hough Transform, it is more a rough estimate, a proportional value changing
with the number of pixels contributing to the circle than an absolute pixel-
counter.

The sequence of circles calculated by this function when called multiple times
is only partly dependent on the strength parameter. First, the function
searches for the point in Hough space with the largest value, representing the
centerpoint most frequently used. At this point it is, however, not clear if the
large value comes from a large circle with many pixels or several smaller
concentric circles with fewer pixels each. After the function has located the
centerpoint, it then calculates the radius of the circle with the best pixel
coverage, i.e. the best ration of pixels per radius.

ExtensionLib.doc – Extension Library Manual

© 1996-2009 Vision Components GmbH Ettlingen, Germany

69

The function requires some heap memory for the storage of the line
descriptors and for some tables. The memory allocation and initialization
should be done using the function

InitHoughCircle()

To deallocate the memory, the function

DeinitHoughCircle()

should be used.

return values FindHoughCircle() returns the standard error code. An error is detected

when:

a) the image variables do not have the proper type (ERR_TYPE)
b) the function is out of memory (ERR_MEMORY)
c) MinRad is out of range (ERR_PARAM)

remark FindHoughCircle() changes the contents of Hough32.

memory

see also HoughCircleTransform()

FindMaxImage32 locate maximum value of 32bit image

synopsis I32 FindMaxImage32(image *Src32, I32 *ix, I32 *iy)

description This function locates the maximum value in a 32bit image. This may be helpful
for finding lines or circles in Hough space. It also gives an indication for the
range of values in Hough space. The Vision Components Hough Transform
does not rely on this function for the localization, but uses more sophisticated
algorithms for this purpose.

 The function returns the maximum value and stores its position in (ix,iy).

memory none

ImgConvert_I32_U8 convert image from I32 to U8 representation

synopsis I32 ImgConvert_I32_U8(image *Src32, image *Dst, I32 Pow)

description This function converts an image of type IMAGE_GREY32 to an image of type

IMAGE_GREY,i.e. to an U8 representation. The image is scaled to its
maximum if Pow=0. For other values of Pow the function multiplies the
destination by Pow and clips the output to the U8 range.

return values The function returns the standard error code.

memory none

ExtensionLib.doc – Extension Library Manual

© 1996-2009 Vision Components GmbH Ettlingen, Germany

70

12 Fast Fourier Transform

The Fast Fourier Transform Algorithm (FFT) is an efficient algorithm to compute the discrete Fourier
transform and its inverse. In the following we have FFT functions for 2D image data as well as 1D
vectors.

vc_fft perform the 2D FFT (16 bit)

synopsis I32 vc_fft(image *src, image *dst, I32 *mean, I32 *scale)

description This function calculates the 2D FFT of an image.

 Image src may be one of the following types:

IMAGE_GREY
IMAGE_GREY16
IMAGE_CMPLX16

Image dst must be of type IMAGE_CMPLX16. This image type stores two 16-
bit values for real and imaginary part in two consecutive memory position
aligned on a 32bit boundary. Real and imaginary parts for the first pixel are
stored as follows:

I16 real, imag, *p;
p = (U16 *)dst->st;
real = p[0]; imag = p[1];

It is possible to use the function in-place, i.e. source and destination images
can be identical.

The size of the images must be a power of 2 in x and y dimension or
otherwise the FFT will be performed in a smaller subwindow.
Reasonable values for dx and dy are between 16 and 2048.

Since the function only uses a 16bit FFT for both directions, a method for best
accuracy has been implemented. This includes handling the mean or average
value mean separately. The function also calculates a scale factor (scale)
depending on the number of bits used during the procedure.
mean and scale are results calculated by the function.

The function automatically allocates space for some internal tables. Each time
the function is called with a new value for dx or dy, a new table is allocated
which will be held in memory until the tables are released calling the function

void FFTDeinitTwiddle()

ExtensionLib.doc – Extension Library Manual

© 1996-2009 Vision Components GmbH Ettlingen, Germany

71

Since the function also computes the tables, the first call of vc_fft() with
new values for dx or dy may take some processing time. If the user requires
constant execution times, it is possible to call the function

I32 FFTInitTwiddle(I32 size)

on program start for all sizes dx and dy (powers of 2) of the images that need
to be processed. This function allocates and computes all tables necessary for
the forward and inverse FFT and will output the standard error code if the
system is out of memory.

return values vc_fft() returns the standard error code.

memory 4*dx*dy bytes + several tables allocated by FFTInitTwiddle(dx)

see also vc_ifft()

vc_ifft perform the inverse 2D FFT (16 bit)

synopsis I32 vc_ifft(image *src, image *dst,

I32 *mean, I32 *scale)

description This function calculates the inverse 2D FFT of an image.

 Images src and dst must be of type IMAGE_CMPLX16.

See the documentation of vc_fft() for further details, since both functions
are almost identical.

GenCplxImg copy image and change type to IMAGE_CMPLX16

synopsis I32 GenCplxImg(image *src, image *dst, I32 *mean)

description Image src may be one of the following types:

IMAGE_GREY
IMAGE_GREY16
IMAGE_CMPLX16

Image dst must be of types IMAGE_CMPLX16. If mean=NULL, the function
just copies image src to image dst. If src has type IMAGE_CMPLX16, this
will be a 100% copy. In all other cases the real part of dst will consist of the
copied values from src, the imaginary part will be set to 0.

If mean!=NULL, the mean or average value of the source image will be
calculated

ExtensionLib.doc – Extension Library Manual

© 1996-2009 Vision Components GmbH Ettlingen, Germany

72

FindMaxCplx find maximum in complex image

synopsis I32 FindMaxCplx(image *src, I32 *ix, I32 *iy)

description This function finds the maximum of the complex absolute value in image src.

The complex absolute value is defined as the square root of the sum of the
squares of real and imaginary part. The maximum square root is the return
value of the function as well as the position of its maximum (ix, iy).

return values square root of maximum or (negative) standard error code.

memory none

DisplayFFT convert complex FFT image to U8

synopsis I32 DisplayFFT(image *src, image *dst, I32 log)

description This function converts the image src of type IMAGE_CMPLX16 into an image

of type IMAGE_GREY as the destination image dst. The function is mainly
used for the display of FFT images.

 log=0 will produce a linear, log=1 a logarithmic output. In both cases, the

square root of the sum of the squared real and imaginary parts will be used.

 The function also re-arranges the 4 quarters of the source image to produce

the conventional FFT image with the frequency 0 in the middle.

 The output is also scaled to the maximum value.

return values standard error code.

memory none

ExtensionLib.doc – Extension Library Manual

© 1996-2009 Vision Components GmbH Ettlingen, Germany

73

DisplayInvFFT convert complex IFFT image to U8

synopsis void DisplayInvFFT(image *src, image *dst,

I32 mean, I32 scale)

description This function converts the image src of type IMAGE_CMPLX16 into an image
of type IMAGE_GREY as the destination image dst. The function is mainly
used for the display of IFFT images (IFFT: inverse FFT).

 The function only takes the real part of image src , mean is added to each

pixel. The result is scaled using the value of scale. The image is not re-
ordered like in DisplayFFT().

return values standard error code.

memory none

FL_fft2 1D FFT (radix 2)

synopsis void FL_fft2(I32 n, I16 *xy, const I16 *w)

description This function calculates the 1D FFT with 16bit fixpoint arithmetic. The
following paramters are used:

 n size of the FFT, must be a power of 2
 xy complex I16 array for in-place operation of FFT
 w twiddle factors

 The output of the function overwrites the source in the complex array xy and

must be bit-reversed using the function

void FL_bitrev(I32 *xy, I16 *index, I32 n)

The twiddle factors and bit-reverse tables are calculated by the function

I32 FFTInitTwiddle(I32 n)

and accessed via the global array FFT_Tab[14]. Use function

void FFTDeinitTwiddle()

to deallocate the memory.

example I16 *w, *index;

FFTInitTwiddle(n);

w = FFT_Tab[cnbits(n)];
index = FFT_Tab[cnbits(n)] + 2 * n;

FL_fft2(n, xy, w);

 FL_bitrev(xy, index, n);

memory none

ExtensionLib.doc – Extension Library Manual

© 1996-2009 Vision Components GmbH Ettlingen, Germany

74

CalcPolarCoordinates calculate polar coordinate table

synopsis I32 CalcPolarCoordinates(image *pol, I32 deg)

description This function calculates a table with polar coordinates necessary for some
functions operating in the frequency domain. One quadrant of polar
coordinates is stored in pol, an image of type IMAGE_CMPLX16. So, if the
original FFT is of size (n x m), the size of pol must be (n/2 x m/2).

deg is the number of steps per 180 degrees. A typical value for deg is 180,
i.e. one step per degree. deg should be a multiple of 2. The maximum value
for deg is 65536.

Since the execution time of the function can be considerable depending on the
image size, sometimes in the range of several seconds, it is recommended to
execute it only once at the beginning of the program and keep the table data
as long as necessary.

return values standard error code

memory none

DeleteFreq delete frequency in FFT-space

synopsis I32 DeleteFreq(image *src, image *pol,

I32 minrad, I32 maxrad)

description DeleteFreq allows the deletion of frequencies f in the FFT-domain with

minrad <= f < maxrad

Since the function works in-place, src is source and destination. pol is the
quadrant image of polar coordinates.
See function CalcPolarCoordinates() for further information.
The frequencies are deleted without angular preferences.

The sizes of src and pol must fit, i.e. either

pol->dx == src->dx/2 AND src is full FFT
pol->dy == src->dy/2

OR

pol->dx == src->dx/2 AND src is half FFT
pol->dy == src->dy

If both conditions do not hold, the function returns ERR_PARAM.

return values standard error code

memory none

ExtensionLib.doc – Extension Library Manual

© 1996-2009 Vision Components GmbH Ettlingen, Germany

75

CalcAngleHisto calculate angular FFT histogram

synopsis I32 CalcAngleHisto(image *src, image *pol, I32 mode,

I32 minfreq, I32 maxfreq, U32 *AngleHisto, I32 nr)

description This function calculates the angular histogram for the FFT given by src.

The sizes of src and pol must fit, i.e. either

pol->dx == src->dx/2 AND src is full FFT
pol->dy == src->dy/2

OR

pol->dx == src->dx/2 AND src is half FFT
pol->dy == src->dy

If both conditions do not hold, the function returns ERR_PARAM.

return values standard error code

memory none

ExtensionLib.doc – Extension Library Manual

© 1996-2009 Vision Components GmbH Ettlingen, Germany

76

13 Routines for Linescan Camera

shading_correct perform shading correction for an image (linescan type)

synopsis I32 shading_correct(image *src, image *dst,

I8 *offs, U16 *shade)

description This function calculates the shading correction for image src and outputs the

result in image dst.
The shading correction algorithm consist in a subtraction of the offset values
stored in the line offset buffer offs and a multiplication with the line shading
buffer shade. The offset values may be positive (offset will be subtracted) and
negative (offset wil be added). The values in the shading table must be 256 for
the identity operation. Larger values will result in an amplification, smaller
values will result in a de-amplification.

The size of both images must be identical. The size of the buffers must be
dx = src->dx

return values standard error code

memory none

line_calibrate calibrate the shading correction for an image (linescan type)

synopsis I32 line_calibrate(image *src1, image *src2,

float t1, float t2, I8 *offs, U16 *shade)

description This function performs the line calibration necessary for the shading
correction. Images src1 and src2 must be images of e.g. a plain white
surface taken at different shutter speeds t1 (for src1) and t2 (for src2) .
The function the calculates the offset and shading tables.

Care must be taken that the source images are not overexposed and have
grey values in a reasonable range. If the camera features positive pixel offset,
it is possible to have one image taken at a very short exposure time with very
low grey values. In this case this image would mainly be responsible for the
calculation of the offset table, while the other image would mainly be
responsible for the shading gain table shade. It is clear that there must be
some difference in shutter time (hence in grey values), otherwise the algorithm
will not produce stable results.

The routine performs a vertical projection on both of the input images. the
images are then compared and the offset and shading tables are calculated
so that for the maximum contrast value the multiplication (shade) will be 256
(which is aquivalent to a multiplication with 1.0)

ExtensionLib.doc – Extension Library Manual

© 1996-2009 Vision Components GmbH Ettlingen, Germany

77

parameters:

src1 : source image 1 (grey image)
src2 : source image 2 (grey image)
t1 : shutter value for image 1
t2 : shutter value for image 2
offs : line offset table (output)
shade : shading table (output)

The size of both images must be identical. The size of the buffers must be
dx = src->dx

return values standard error code

memory none

line_IIR perform line IIR regulation of background intesity (linescan type)

synopsis I32 line_IIR(image *src, image *dst,

I32 tol, I32 int_const, I32 p_const, I32 target)

description This function performs a recursive filter used in linescan applications.

 The function uses the following parameters:

 src source image
 dst destination image
 tol grey value tolerance for averaging

int_const integration parameter
p_const proportional parameter
target target grey value

The algorithm may be used for surface inspection, where a homogeneous
surface is inspected. It is mainly a regulation (tracking) of the grey values in a
line.
Assume, that the grey values in a line are in the same range within a tolerance
(after the shading correction). Pixels not within this tolerance (tol) are not
considered. All the pixels within the tolerance are subtracted from the tracking
average and the difference is integrated. The difference itself (proportional
regulation) and the integrated difference (integration regulation) are multiplied
with the corresponding constant int_const/1024 and p_const/1024 and
used to produce a new tracking average. This average is then subtracted for
the complete line, the target value target is added to produce a destination
image with an average value of target.

 The size of both images must be identical. The size of the buffers must be
dx = src->dx

return values standard error code

ExtensionLib.doc – Extension Library Manual

© 1996-2009 Vision Components GmbH Ettlingen, Germany

78

14 Numerical algorithms from linear algebra

The functions of this chapter cover a set of numerical algorithms from linear algebra. Since vectors
and matrices of floating-point type are used, care must be taken to avoid numerical instabilities. The
algorithms themselves were chosen to provide maximum stability. This, however, cannot be
guaranteed under all circumstances. Also, additional user calculations for the inputs or outputs of the
functions, may introduces significant sources of numerical instability.

allocate a float matrix with subscript range[0..nr)[0..nc)

float **matrix(I32 nr, I32 nc)

free a float matrix allocated by matrix()

void free_matrix(float **m)

allocate a float vector with subscript range[0..nh)

float *vector(I32 nh)

free a float vector allocated by vector()

void free_vector(float *v)

print a two-dimensional float matrix

void matrix_print(I32 n, I32 m, float **a)

print a float vector

void vect_print(I32 n, float x[])

calculate vector norm

float vect_norm(I32 n, float x[])

multiplication of matrix with vector

void matrix_vect_mult(I32 n, I32 m, float **a, float x[], float y[])

ExtensionLib.doc – Extension Library Manual

© 1996-2009 Vision Components GmbH Ettlingen, Germany

79

multiplication of two matrices

void matrix_mult(I32 n, I32 m, float **a, float **x, float **y)

copy a matrix

void matrix_copy(I32 n, I32 m, float **src, float **dst)

calculate determinant of n x n matrix using LU decomposition

float lu_det(float **a, I32 n)

calculate inverse of n x n matrix using LU decomposition

I32 lu_inverse(float **a, float **y, I32 n, float *det)

ExtensionLib.doc – Extension Library Manual

© 1996-2009 Vision Components GmbH Ettlingen, Germany

80

15 Solar Wafer Library

MeasureRectangle find and measure a rectangle

synopsis I32 MeasureRectangle (MR_Par *Par, image *SearchArea)

description This high-level function finds a rectangle (solar wafer) in the image given by
image image *SearchArea of type IMAGE_GREY and calculates its
geometric properties.

 The selection of a range of parameters and the output of the data is done by

the following parameter struct:

typedef struct
{
 //
 // input parameters
 //

 I32 FindZoom; /* number of demagnification stages */

 //
 // edge parameters
 //

 I32 Type; /* see function edge for description */
 I32 Sigma; /* 10 x sigma */
 I32 BinMode;
 I32 MinContr;
 I32 Thresh;

 //
 // hough parameters
 //

 HoughControl Control; /* see Hough transform for descr. */

 //
 // line selection filters
 //

 I32 DeviceCol; /* 0=Black 1=White */
 I32 MinLen; /* min length in pixel */
 I32 MaxLen; /* max length in pixel */
 I32 PropOpp; /* proportion of opposite lines in percent */
 I32 PropNext; /* proportion of adjacent lines in percent */
 I32 DeltaAngle; /* max delta angle for 90 degree corners */

 //
 // subpixel parameters
 //

 I32 EdgeFilterP; /* must be 4 */
 I32 EdgeFilterV; /* must be 2 */

 //
 // defect parameters
 //

 I32 DefectWidth; /* maximum defect width in pixels */

ExtensionLib.doc – Extension Library Manual

© 1996-2009 Vision Components GmbH Ettlingen, Germany

81

 //
 // output parameters
 //

 //
 //
 // line 0
 // Point 0 ------------------- Point 1
 // | |
 // | |
 // | |
 // line 3 | | line 1
 // | |
 // | |
 // | |
 // Point 3 ------------------- Point 2
 // line 2
 //
 //

 vcline Line [4]; /* BestLine parameters */

 I32 PointsXY[4]; /* number of line points in LineXY */
 float *LineXY [4]; /* accurate X and Y positions of the line */

 float EndX0 [4]; /* start of line, x-coordinate */
 float EndY0 [4]; /* start of line, y-coordinate */
 float EndX1 [4]; /* end of line, x-coordinate */
 float EndY1 [4]; /* end of line, y-coordinate */

 float Dmin [4]; /* min line deviation (negative) */
 float Dmax [4]; /* max line deviation (positive) */
 float DSigma [4]; /* standard deviation from line */

 // result
 I32 Error;
}

MR_Par;

The function performs the following tasks:

(1) Pyramid Demagnification. If selected, the image is zoomed down first to
save computation time. No zoom down is selected as default. The
function keeps track of the magnification stages and adjusts the output
correspondingly

(2) Edge detection using the function edge()
(3) Hough transformation for lines
(4) Sophisticated line selection with respect to the user paramters
(5) Ordering of lines, 0=top, 1=right, 2=bottom, 3=left
(6) Subpixel measurement of lines. Lines need to have contrast for this stage.

Subpixel resolution: 1/100 of a pixel
(7) chi-square bestline for the 4 lines
(8) calculate deviation from bestline including mousebite and sharkteeth

The line selection (4) is mainly a filter that makes sure that the selected lines
fulfil a certain geometric relationship. With MinLen and MaxLen the minimum
and maximum length of the lines can be specified. The parameters PropOpp
and PropNext define the proportion of opposite and adjacent lines, e.g. a
value of 20 means that one line needs to have at least 20% of the pixels of the
other (longer) line. DeltaAngle is the tolerance of the 90 degree corners, i.e
a value of 10 means that for the corners all angles between 80 and 100
degrees are allowed.

ExtensionLib.doc – Extension Library Manual

© 1996-2009 Vision Components GmbH Ettlingen, Germany

82

The rectangle does not need to be closed in order to be detected, i.e. it is
possible that the lines do not have an intersection. On the other hand, it is also
allowable that the lines are longer than necessary to produce a rectangle.
With the values EndX0, EndY0, EndX1, EndY1, the function outputs the
start and end points of each line.
The pixel lists LineXY[4], that are generated by the function also include all
the defects in the range of DefectWidth around the measured lines.

The function allocates memory for the edge detection tables, the Hough
Transform and for the 4 output xy-lists. This memory space is kept after the
execution of the function. To release the memory, the function

void DeinitMR(MR_Par *Par)

should be called, when the function is no longer needed.

return values standard error code

memory 3*dx*dy + sqrt(dx^2 + dy^2)*256 + memory for result
 + tables for edge detection and Hough Transform

ExtensionLib.doc – Extension Library Manual

© 1996-2006 Vision Components GmbH Ettlingen, Germany

A

Appendix A: Utilities

void print_image(image *src) prints image in HEX code.

Appendix B: Corr2 - normalized grey scale correlation
sample size = 32x32 pixels

corr2 is an example for the usage of the correlation functions. On program start the following message
appears:

place sample in center frame
press any key when ready

You may then position an arbitrary pattern in the center frame (128x128 pixels). As soon as you press
a key, the sample will be stored and the following message will appear.

sample stored

The program enters tracking mode, where it shows where the pattern is found in the image. Move the
sample around to get an impression of the performance.
The right bar shows the quality of the detection. The higher the marking, the better the comparison.

ExtensionLib.doc – Extension Library Manual

© 1996-2009 Vision Components GmbH Ettlingen, Germany

B

Appendix C: List of library functions

Affine and non-affine coordinate transformations

Name Type Description

void rotate90l(image *src, image *dst) C rotate image by 90 degrees

counter-clockwise
void rotate90r(image *src, image *dst) C rotate image by 90 degrees clockwise
void rotate180(image *src, image *dst) C rotate image by 180 degrees

I32 move_image_alpha(image *src, C move image with 2D interpolation
image *dst, float mx, float my, U8 bgnd)

I32 affine_image_transform(image *src, C general affine image transformation

image *dst, float a[2][2], fast version
float t[2], U8 bgnd)

I32 affine_image_transform2(image *src, C general affine image transformation

image *dst, float a[2][2], slow floating-point version
float t[2], U8 bgnd)

void calc_rotation_matrix(float angle, C calculate affine transformation matrix

float cx, float cy, for a rotation
float a[2][2], float t[2])

I32 polar_image_transform(image *src, C polar to cartesian image

image *dst, float t[2], transformation
U32 r0, U8 bgnd) fast version

I32 polar_image_transform2(image *src, C polar to cartesian image

image *dst, float t[2], transformation
U32 r0, U8 bgnd) slow floating-point version

void mirror_hor(image *src, image *dst) C mirror image horizontally

void mirror_ver(image *src, image *dst) C mirror image vertically

void xshear(image *src, float shear, C horizontal image shear

image *dst, float offset, U8 bgnd)

I32 threepoint_calculate(C three-point formula
 point *p0, point *p1, point *p2, for affine
 point *q0, point *q1, point *q2, transformations
 float **a, float *t)

I32 lens_transform(C lens distortion correction
 image *src, image *dst,
 point *center, float k3, U8 bgnd)

I32 lens_transform2(image *src, C lens distortion correction, type 2
 image *dst, point *center,
 float f, float mag, U8 bgnd)

ExtensionLib.doc – Extension Library Manual

© 1996-2009 Vision Components GmbH Ettlingen, Germany

C

Filter Functions

Name Type Description

I32 isef(image *src, image *dst, float b) C infinite symmetric exponential filter
I32 isef_hor(image *src, C horizontal infinite symmetric

image *dst, float b) exponential filter (recursive)
I32 isef_ver(image *src, C vertical infinite symmetric

image *dst, float b) exponential filter (recursive)
I32 gauss(image *src, image *dst, C recursive gauss filter

float sigma)
I32 gauss_hor(image *src, image *dst, C horizontal gauss filter

float sigma) (recursive)
I32 gauss_ver(image *src, image *dst, C vertical gauss filter

float sigma) (recursive)
I32 gauss_fir(image *src, image *dst, C non-recursive gauss filter

float sigma)
I32 gradient_2x2(image *src, image *dst) C vector gradient (robert’s cross)
I32 gradient_3x3(image *src, image *dst) C vector gradient (sobel)
I32 maxMxN(image *src, image *dst, C moving maximum (dilation)filter
 I32 mx, I32 my)
I32 minMxN(image *src, image *dst, C moving minimum (dilation)filter
 I32 mx, I32 my)

Programs for edge detection

Name Type Description

I32 edge(image *src, image *dst, C calculate image edges
 I32 type, float sigma, I32 BinMode,
 I32 MinContrast, float fthresh,
 I32 binar_value)

I32 edge_canny(src, dst, binar_value) M edges, canny style
I32 edge_fast(src, dst, binar_value) M edges, fast routine
I32 edge_sobel(src, dst, binar_value) M edges, sobel style

Programs for gray scale correlation

Name Type Description

I32 vc_corr2(image *a, image *b, C small kernel correlation routine

I32 mcn, I32 mcr, I32 *x0, I32 *y0) extended 32x32 kernel

I32 vc_corr3(image *src, image *smp, C small kernel correlation routine
 image *dst32, I32 mcn) 32bit image output

float corrcheck(image *a, image *b) C calculate correlation coefficient

ExtensionLib.doc – Extension Library Manual

© 1996-2009 Vision Components GmbH Ettlingen, Germany

D

Programs for processing binary images in (unlabelled) run length code

Name Type Description

rlcnand (U16 *a, U16 *b, U16 *dest) M NAND RLCs
rlcnor(U16 *a, U16 *b, U16 *dest) M NOR RLCs
rlcequiv(U16 *a, U16 *b, U16 *dest) M EQUIV=NXOR

Programs for processing binary images in labelled run length code

Name Type Description

U16 *rlc_label(U16 *rlc, C object labelling

U16 *slc, I32 mode)

U16 *sgmt(U16 *rlc, U16 *slc) M object labelling 4/4
U16 *label44(U16 *rlc, U16 *slc) M object labelling 4/4
U16 *label88(U16 *rlc, U16 *slc) M object labelling 8/8
U16 *label84(U16 *rlc, U16 *slc) M object labelling 8/4
U16 *label48(U16 *rlc, U16 *slc) M object labelling 4/8

I32 rlc_qin(U16 *rlc, I32 qin[], U32 n) C object inclusion property

I32 rlc_nhls(U16 *rlc, C number of holes property

U32 holes[], U32 n)

I32 rlc_arf(U16 *src, U16 *dst, C RLC area filter for small objects

U32 min_area)
I32 rlc_select(U16 *rlc, U16 *rlc2, C RLC object selection with guide

I32 select[], U32 n) image
I32 rlc_delete(U16 *src, U16 *dst, C delete RLC objects using

I32 select[]) a selection list
I32 rlc_moments(U16 *rlc, C calculate moments of order 0, 1, 2

moment *mom, U32 n)

float mom_calc_cgx(moment *mom) C calculate center of gravity x
float mom_calc_cgy(moment *mom) C calculate center of gravity y

float mom_calc_angle(moment *mom) C calculate angle of inertial axis
 result in degrees

float mom_calc_rad(moment *mom) C calculate angle of inertial axis
 result in radiants

float mom_calc_ecc(moment *mom) C calculate object eccentricity

float mom_calc_ellipse_a(moment *mom) C calculate ellipse half-parameter a
float mom_calc_ellipse_b(moment *mom) C calculate ellipse half-parameter a

float mom_calc_phi1(moment *mom) C calculate Hu moment #1
float mom_calc_phi2(moment *mom) C calculate Hu moment #2

ExtensionLib.doc – Extension Library Manual

© 1996-2009 Vision Components GmbH Ettlingen, Germany

E

Miscellaneous Image Functions

Name Type Description

I32 get_component(image *src, C get image component

image *dst, I32 comp)
I32 equalize(image *src, image *dst) C equalize image
I32 set_ovl_false_color(I32 table) C set translucent overlay LUT to false
 color palette
I32 set_translucent_to_value(I32 t, C set translucent overlay LUT to fixed

I32 r, I32 g, I32 b) value

I32 display_directions(image *src, C display a directional image using

I32 thresh, I32 startx, I32 starty) overlay

void mask_frame(image *src, I32 sx0, C mask a frame with programmable
 I32 sx1, I32 sy0, I32 sy1, I32 value) frame width

Pixellist functions

Name Type Description

I32 bestline(I32 *xy, I32 N, C calculate chi-square bestline
 float *cx, float *cy, float *b

I32 bestcircle(I32 *xy, I32 N, C calculate chi-square bestcircle

float *px, float *py, float *rad)

I32 clip(I32 N, I32 *xy_src, I32 *xy_dst, C perform window-clipping
I32 x_min, I32 x_max,
I32 y_min, I32 y_max)

void translate(I32 N, I32 *xy_src, C perform translation of coordinates in

I32 *xy_dst, I32 mx, I32 my) pixellist

I32 PL_line_stats(I32 *xy, I32 nr, C line statistics for pixel list

vcline *line, float *dmin,
float *dmax, float *sigma)

I32 PL_line_ending(I32 *xy, I32 nr, C line ending for pixel list

vcline *line, I32 *imin, I32 *imax)

ExtensionLib.doc – Extension Library Manual

© 1996-2009 Vision Components GmbH Ettlingen, Germany

F

Geometric tools

Name Type Description

I32 LineIntersection(vcline *a, C calculate intersection point of two

vcline *b, point *r) lines

float PointDistance(point *a, point *b) C calculate Euclidean distance between
 two points

float PointLineDistance(point *p, C calculate distance beween a point and

vcline *l) a line

void LinePerpendicular(point *p, C calculates a line perpendicualar to a

vcline *l, vcline *r) given one through a point

void LineParallel(point *p, vcline *l, C calculates a line parallel to a given

vcline *r) one through a point

float Angle(vcline *a) C calculates angle of a line

float LineAngle(vcline *a, vcline *b) C calculates angle between two lines

void LineParameters(point *p1, C calculates the line parameters using

point *p2, vcline *line) two points

Hough Transform

Name Type Description

I32 HoughInit() C initialize tables for HT
I32 HoughInit2(HoughControl *control) C initialize tables for findline()

void HoughDeinit() C deallocate tables for HT
void HoughDeinit2(HoughControl *control) C deallocate tables for findline()

I32 HoughTransform(image *src, C Hough Transform for lines
 image *hough32, HoughControl *control)

I32 HoughCalcDx(image *src) C calculate Hough horizontal size

I32 FindHoughLine(image *hough32, C find lines in accumulator space

image *src, HoughControl *control)

void HoughDefaults(HoughControl *control) C set defaults for Hough Transform

void HoughSortLine(HLine **listptr, C sort line list according to different
I32 offset) sorting criteria

I32 HoughRank(HLine *listptr, C get number of lines above a certain

I32 offset, I32 value) value

I32 GetHoughPixels(image *Src, C extract xy-list from Hough
HLine *line, HoughControl *ctrl, I32 *xy) source image

ExtensionLib.doc – Extension Library Manual

© 1996-2009 Vision Components GmbH Ettlingen, Germany

G

Graphics functions

Name Type Description

I32 draw_line(image *a, float cx, C draw a line in normalized

float cy, float b, I32 col, floatingpoint form
void (*func)())

I32 draw_circle(image *a, I32 px, C draw a circle with window-clipping

I32 py, I32 rad,
I32 col, void (*func)())

I32 IntersectionPoints(image *a, C intersection of a line with image
 float cx, float cy, float b, borders
 I32 *x0, I32 *y0, I32 *x1, I32 *y1)

ExtensionLib.doc – Extension Library Manual

© 1996-2009 Vision Components GmbH Ettlingen, Germany

H

Numerical algorithms from linear algebra

Name Type Description

float **matrix(I32 nr, I32 nc) C allocate a float matrix [0..nr)[0..nc)
void free_matrix(float **m) C free a float matrix allocated by matrix()
float *vector(I32 nh) C allocate a float vector [0..nh)
void free_vector(float *v) C free a float vector allocated by vector()

void matrix_print(I32 n, C print a two-dimensional float matrix

I32 m, float **a)

void vect_print(I32 n, float x[]) C print a float vector
float vect_norm(I32 n, float x[]) C calculate vector norm

void matrix_vect_mult(I32 n, I32 m, C multiplication of matrix with vector

float **a, float x[], float y[])

void matrix_mult(I32 n, I32 m, C multiplication of two matrices

float **a, float **x, float **y)

void matrix_copy(I32 n, I32 m, C copy a matrix

float **src, float **dst)

float lu_det(float **a, I32 n) C calculate determinant of n x n matrix

I32 lu_inverse(float **a, C calculate inverse of n x n matrix

float **y, I32 n, float *det)

Legend: A: Assembly function C: C function M: Macro

ExtensionLib.doc – Extension Library Manual

© 1996-2009 Vision Components GmbH Ettlingen, Germany

I

Index
accumulator space ... 46
affine transformations ... 4
affine_image_transform.. 7
affine_image_transform2.. 7
bestcircle .. 40, 41
bestline ... 40
binary images ... 27, 28
calc_rotation_matrix ... 8
clip .. 40, 43
Corr2 ..A
corrcheck.. 26
correlation... 24, A
dilation .. 20
display_directions ... 37, 39
dispobj .. 28
draw_circle ... 40, 43
draw_line .. 40, 42
edge ... 22
edge detection .. 21
equalize .. 37
erosion.. 20
FindHoughLine ... 46, 51, 56
free_matrix.. 61
free_vector.. 61
gauss.. 14, 15
gauss_fir ... 18
gauss_hor... 14, 17
gauss_ver ... 14, 17
get_components ... 37
GetHoughPixels.. 54
gradient image.. 21
gradient_2x2... 14, 18
gradient_3x3... 14, 19
Hough space .. 46, 55
Hough Transform.. 46, 55
HoughCalcDx ... 50
HoughDefaults.. 48, 53
HoughDeinit.. 50, 52, 58, 60
HoughDeinit2.. 52
HoughInit .. 50, 51, 58, 60
HoughInit2 .. 51
HoughRank... 54
HoughSortLine.. 49, 53
HoughTransform....................................... 46, 50, 55
hysteresis thresholding... 21
IntersectionPoints ... 40, 44
isef.. 14
isef_hor... 14
isef_ver ... 14, 15

label44.. 29
label48.. 29
label84.. 29
label88.. 29
labelled run length code 28
lens_transform.. 13
linear algebra.. 61
low-pass filters.. 21
lu_det.. 62
lu_inverse ... 62
MarkCross .. 45
mask_frame...37, 39
matrix.. 61
matrix_copy .. 62
matrix_mult... 62
matrix_print... 61
matrix_vect_mult .. 61
maxMxN ..14, 20
minMxN ...14, 20
mirror_hor... 10
mirror_ver ... 10
miscellaneous functions 37
mom_calc_angle .. 28
mom_calc_cgx ... 28
mom_calc_cgy ... 28
mom_calc_ecc ..28, 35
mom_calc_ellipse_a... 28
mom_calc_ellipse_a... 36
mom_calc_ellipse_b..28, 36
mom_calc_phi1 ...28, 36
mom_calc_phi2 ...28, 36
mom_calc_rad.. 28
move_image_alpha .. 6
NCF...24, 25, 26
NCF.. A
pixel lists... 40
polar_image_transform... 9
polar_image_transform2....................................... 10
print_image... A
References ... 2
rlc_arf ..28, 31
rlc_calc_angle .. 34
rlc_calc_cgx.. 34
rlc_calc_cgy.. 34
rlc_calc_rad .. 35
rlc_delete...28, 32
rlc_label ...28, 29
rlc_moments..28, 33
rlc_nhls ..28, 31

ExtensionLib.doc – Extension Library Manual

© 1996-2009 Vision Components GmbH Ettlingen, Germany

J

rlc_qin... 30
rlc_select .. 28, 32
rlc2.. 27
rlcand.. 27
rlcequiv ... 27
rlcnand.. 27
rlcnor .. 27
rlcor .. 27
rlcxor... 27
rotate180 .. 5
rotate90l ... 5
rotate90r ... 5
run length code... 27

set_ovl_false_color..37, 38
set_translucent_to_value.................................37, 38
sgmt.. 29
threepoint_calculate ... 12
tracking... A
translate...40, 44
vc_corr2.. 24
vc_corr3.. 25
vect_norm... 61
vect_print.. 61
vector.. 61
xshear... 11

ExtensionLib.doc – Extension Library Manual

© 1996-2009 Vision Components GmbH Ettlingen, Germany

K

Visit the Vision Components site www.vision-components.com for further information and
documentation and software downloads:

Web Site Menu Links Content

Home Latest News from VC

Our Company VC Company Information

Contact Us Distributor list / Enquiry forms

News More News form VC

Products

VC Hardware

Product Overviews:
including accessories listings

with corresponding order numbers

VCXX Camera Series
VC20XX, VC4XXX Smart Cameras
VCSBC Board Cameras
VCM Camera Sensors

VC Software
VCRT Operating System
VCLIB Image Processing Library
Vision Components’ Special
Libraries

M200 Data Matrix Code Reader
VCOCR Text Recognition
Color Lib

3rd Party Software Overview of 3rd Party software
available for VC Smart Cameras

Support:

Support News Overview about latest features,
manuals and SW updates

Knowledge Base / FAQ Searchable HW and SW
information database

Download Area Download of all:

Public Download Area
(free access)

- Product brochures
- Camera Manuals

Registered User Dl Area
(registration required)

- Programming Manuals

Customer Download Area
(user- and software registration
required)

- Software updates
- Demo Codes
- Programming Tutorials

