

 Vision
Components
The Smart Camera People

VCRT 5.0 Software Manual

Operation System Functions

Revision 5.08 Jan 14 2010 MS
Document name: VCRT5.pdf
© Vision Components GmbH Ettlingen,
Germany

VCRT5 Software Manual of Operation System Functions

© 2010 Vision Components GmbH Ettlingen, Germany VCRT5.pdf

II

Foreword and Disclaimer

This documentation has been prepared with most possible care. However, Vision Components GmbH
does not take any liability for possible errors. In the interest of progress, Vision Components GmbH
reserves the right to perform technical changes without further notice.
Please notify support@vision-components.com if you become aware of any errors in this manual or if
a certain topic requires more detailed documentation.
This manual is intended for information of Vision Component’s customers only. Any publication of this
document or parts thereof requires written permission by Vision Components GmbH.

Please also consult the following resources for further reference:

Description Titel on www.vision-comp.com Download from Area
Getting Started VC Smart
Cameras

 Getting Started VC Smart
Cameras with TI DSP

Public Download Area Getting
Started VC SDK Ti

Einführungshandbuch VC
Smart Kameras

 Schnellstart VC Smart Kameras
mit TI DSP

Public Download Area Getting
Started VC SDK Ti

Introduction à l'utilisation
des caméras Vision
Components

 Démarrage rapide Smart Cameras
Vision Components

Public Download Area Getting
Started VC SDK Ti

Introduction to VC Smart Camera
Programming

 Programming Tutorial Basics Registered User Area Training

Demo programs used in
Programming Tutorial Basics

 Tutorial_Code Registered User Area Training

VC4XXX Hardware Manual VC40XX Smart Cameras
Hardware Documentation

Public Download Area Hardware
Documentation VC Smart
Cameras

VCSBC4XXX Single Board Smart
Camera Hardware Manual

 VCSBC4018 and VCSBC4016
Manual

Public Download Area Hardware
Documentation VC Smart
Cameras

VCRT Operation System TCP/IP
Functions Manual

 VCRT 5.0 TCP/IP Manual Registered User Area Software
documentation VC Smart
Cameras

VCLIB 2.0 /3.0 Image Processing
Library Manual

 VCLIB 2.0/ 3.0 Software Manual Registered User Area Software
documentation VC Smart
Cameras

Note:

→ This document is valid for VC Smart Cameras with Texas Instrument DSP only!
→ The TCP/ IP Function are now described in a separate document (see refererences).

The Light bulb highlights hints and ideas that may be helpful for a development.

This warning sign alerts of possible pitfalls to avoid. Please pay careful attention to sections
marked with this sign.

Copyright © 2001-2010 by Vision Components GmbH Ettlingen, Germany

!

VCRT5 Software Manual of Operation System Functions

© 2010 Vision Components GmbH Ettlingen, Germany VCRT5.pdf

III

Table of Contents
1 General Information 1

2 Tasks of the Operating System 1

3 VC/RT Resources 2

4 The VC/RT Kernel 3

5 The Shell ("shell") 4
5.1 Description of the Shell Commands 6

6 The Operating System Functions 20
6.1 Use of exec() 20
6.2 Use of exec2() for starting new tasks 21
6.3 Use of events 22
6.4 Use of compressed executeables 23
6.5 Overview of the VCRT Library Functions 24
6.6 Memory Allocation Functions 24
6.7 General I/O Functions 28
6.8 Program execution 33
6.9 I/O Functions 35
6.10 Video Control Functions 39
6.11 RS232 (V24) Basic Functions 47
6.12 Utility Functions 50
6.13 Lookup Table Functions for Video Display and Overlay 52
6.14 Time Related Functions 56

7 Prototypes, Include Files 62

8 Memory Model of VC20xx / VC40xx / VC44xx Cameras 62

9 Functional Principle of the VC20xx / VC40xx / VC44xx Smart Cameras 63
9.1 Block Diagram of VC20xx Cameras 64

10 Organization of the DRAM 66

11 Organization of the Overlay DRAM 67

12 Description of the File Structure 69

13 System Variables 70

14 Image Capture Timestamps 75

15 Useful Files 76
15.1 c.bat 76
15.2 cc.bat 76
15.3 cc.cmd 77
15.4 Large Projects 78

VCRT5 Software Manual of Operation System Functions

© 2010 Vision Components GmbH Ettlingen, Germany VCRT5.pdf

IV

15.5 Relocateable Objects 79

16 Description of the Example Programs 81
16.1 test.c 81
16.2 info.c 81

17 List of VC/RT Functions 82

VCRT5 Software Manual of Operation System Functions

© 2010 Vision Components GmbH Ettlingen, Germany VCRT5.pdf

1

1 General Information

The VC Series cameras are compact, light-weight black-and-white or color video cameras with video
memory and a frame processor. They integrate a high-resolution CCD sensor with a fast frame-
processing signal processor. A dynamic RAM is used to store data and video frames. Interfaces allow
communication with the outside world. The cameras set standards for performance and integration
density.

These cameras are built for industrial applications. High goals were set as regards the frame
resolution, the sturdiness of the casing, and the electromagnetic compatibility, as mere examples. The
cameras are insensitive to vibrations and shocks, while permitting precise measurements and tests.
They are ideally suited as OEM cameras for mechanical engineering applications.

This documentation describes the cameras' software, especially the operating system functions and
general functions. However, in many cases the hardware documentation is decisive. Special function
libraries are also documented separately. Please consult the corresponding manuals.

For the following topics refer to the “VC20XX VC40XX Installation Manual”:

- Overview of Vision Components Development Software/ Licencing/ SW Registration and
Updates

- Setup and use of Code Composer Studio
- SW Compilation using CCS
- Location of Header, Libs, Utilities and Demo Files on your PC after Installation of the VC SDK-

TI
- Cabling Overview
- Communication with the VC Smart Camera, Uploading of Programs
- Overview of the Camera Shell (for detailed information refer to this manual)
- Structure of the Vision Components Web Site including the Support section
- Trouble Shooting Guide camera / PC comunication

For a Programming Tutorial including detailed descriptions of sample code refer to the Prog_Tut.pdf
(Programming Tutorial VC20XX and VC40XX Smart Cameras).

Please also refer to section Fehler! Verweisquelle konnte nicht gefunden werden. for a list of
previously undocumented VCRT Functions.

2 Tasks of the Operating System

The operating system VC/RT controls all of the camera's elementary functions. It also provides the
user with a command interpreter (the "shell") for easy user access to all resources. It supports the user
in the debugging and test phase. VC/RT is a real-time multitasking operating system, i.e. it can
execute several tasks in parallel and it can guarantee execution times for time-critical tasks. VC/RT
contains a fully-featured TCP/IP stack which allows communication using a variety of modern
communication standards like TELNET, FTP or HTTP.

The following table compares the properties of VC/RT to those of other operating systems

Property VC/RT MS-DOS OS/9 UNIX/LINUX WINDOWS
Real-time capable yes no yes no no
Multitasking yes no yes yes yes
Timeslice 1 msec --- 10 msec 1 – 10 msec 50 msec
Filesystem
tolerant to power
interruption

yes no yes no no

Royalties one-time*) per installation per installation LINUX: none per installation

*) one-time license per developer workstation, no royalties
The interface to the VC/RT system and file utilities is compatible to POSIX and to a high degree to
UNIX.

VCRT5 Software Manual of Operation System Functions

© 2010 Vision Components GmbH Ettlingen, Germany VCRT5.pdf

2

3 VC/RT Resources

The main task of an operating system is to administer the processor's resources. However, an
operating system for a video camera must control somewhat "uncommon" resources:

Resource Functions

CCD sensor Picture taking and reproduction, various control functions

Frame output Control of the display and overlay outputs

Flash EPROM Loading of VC/RT kernel / File access

SD card / Multi-media card File access

SDRAM Accessing and managing memory, allocating and releasing memory

RS232 interface Data buffering and background I/O operations

Ethernet Fully featured Highspeed TCP/IP stack / socket communication

Interrupts Control of the various interrupt sources

There are library programs for most of the above operating system functions, which interface to the
user program (C program).

VC/RT consists of the following components:

- The kernel
- The shell
- TELNET server
- FTP server
- HTTP server
- Various routines which can be linked to the user program.

Fig. 1: VC/RT functionality

VCRT5 Software Manual of Operation System Functions

© 2010 Vision Components GmbH Ettlingen, Germany VCRT5.pdf

3

4 The VC/RT Kernel

The kernel is located permanently at addresses 0xA0000000 through 0xA00FFFFF in SDRAM. It thus
occupies 1 MBytes of memory. (The memory model is described in Organization of the SDRAM)

The kernel consists of the following components:

• During power-up or reset, the loader loads the shell (filename: "shell").
• Interrupt-controlled routines for time management. Via an interrupt, all time-related functions

are controlled once per millisecond.
• Interrupt-controlled routines for all communication channels (serial or Ethernet).
• Interrupt-controlled routines for the PLC inputs/outputs. On any change of the camera's inputs

an interrupt is generated with which the status of the input lines is copied to the PLCIN system
variable. Other interrupts detect power failure conditions

• DMA-controlled routines for taking and displaying pictures. Via DMA, all frame-related display
and capture functions are controlled.

• DMA-controlled routines and file-system for SD card / multi-media card access.
• DMA-controlled routines for ETHERNET communication
• Integrated TCP/IP stack with TELNET, FTP and HTTP servers.
• System variables allow access and modification of operating modes
• With the VCRT event system, user programs can wait for events like image capture without

wasting CPU time
• The relocation loader allows user programs to be loaded in memory at variable locations

depending on availability of memory space.

VCRT5 Software Manual of Operation System Functions

© 2010 Vision Components GmbH Ettlingen, Germany VCRT5.pdf

4

5 The Shell ("shell")

The shell is a program loaded by the loader. The shell communicates with the user via the serial
interface. (A PC with a communications program, such as TERATERM, is commonly used for this.)
As is common with most operating systems, commands can be entered (with or without parameters)
and are interpreted by the shell.

The shell itself contains a number of useful commands which can be executed directly. A built-in help
command (called by entering he) provides a quick overview of these functions.

The shell also determines if entered commands must be executed from the flash EPROM or SD-card
(the command could also be a user program or batch file, for instance).
In this case, the program is loaded, the command string is transferred and the program is started. The
shell is reloaded to main memory after the program terminates.

In addition to being the user interface, which allows entering commands, loading and executing
programs, the shell provides the following features:

1. execution of batch files
 any shell command or any available program name may be placed in an ASCII-file which
 may be executed simply by typing it's name.

 example:

 batch file commands comment (not part of the batch file)

 bd 19200 set baudrate to 19200 bauds
 #st execute self-test function (sector

0 program)
 userpg1 execute user program userpg1
 jl img display JPEG image img
 autoexec execute batch file autoexec

 Note: do not call batch files recursively

2. any shell command may be invoked by a running program simply as parameter for
 the program “shell” (in-line mode)

example:

 #include <vcrt.h>
 argc=2 is the number of arguments in the command line argv

 void main(int d, int argc, char *argv)
 {

 exec("shell",2,"bd 19200");/* 2 parameters = bd + 19200 */

 }

 remark: calling a batch file with exec is also possible

VCRT5 Software Manual of Operation System Functions

© 2010 Vision Components GmbH Ettlingen, Germany VCRT5.pdf

5

example:

 #include <vcrt.h>

 void main(int d, int argc, char *argv)
 {
 ...
 exec("shell",1,"batch"); /* 1 parameter = batch

 */
 ...
 }

3. The shell itself may be called by a user program (e.g. to check memory usage, change shutter
settings, etc.). You may resume operation of the calling program simply by typing 'ex'.

example:

 #include <vcrt.h>

 void main(int d, int argc, char *argv)
 {
 argc=0; /* shell is called

without */
 argv='\0'; / parameter

 */

 exec("shell",argc,argv);
 }

Note, that the command line buffer argv of the previous shell is used. This saves valuable memory
space. Otherwise a command line buffer with 80 elements char argc[80] must be supplied on the stack
or heap.

VCRT5 Software Manual of Operation System Functions

© 2010 Vision Components GmbH Ettlingen, Germany VCRT5.pdf

6

5.1 Description of the Shell Commands

The shell contains the following internal commands (in alphabetical order):
(bold writing indicates changes or new commands resp. older VCRT versions)

bd set baud rate bd <baudrate>
cd change data directory cd <path>
cx change execution directory cx <path>
copy copy a file copy <source path> [<dest path>]
del delete file del <path>
dir directory of Files dir [<option>] [<path>]
disp switch display modes disp [<option>] [<mode>]
dd DMEM Display dd <addr>||<range>
dwn download file to PC dwn <path>
er erase complete flash eprom er
ex exit from shell ex
fmt format media card fmt [<size> [<clustersize>]]
? help ? [<name>]
he help he [<name>]
help help help [<name>]
ht hardware test ht
js jpeg store js <path>
jl jpeg load jl <path>
kill delete task kill <PID>
kl kernel log kl
lo load S records lo
mdir display module directory mdir [<option>]
mem display memory usage mem [<option>] [<PID>]
mkdir make directory mkdir <path>
ping test IP connection ping <IP-address>
pk pack flash memory pk
procs print task list procs
sh set shutter value sh <number>
time time and date command time [<option>]
tp take picture tp
type type ASCII file type <path>
ver print software version ver
vd video modes vd [[<option>] <frame number>]
wb whitebalance wb

bd set baud rate for the serial interface

synopsis bd <baudrate>

description The baud rate for the serial interface can be changed with bd.The parameter

is a decimal specifying the baudrate. Non-standard values are also supported.
The maximum baudrate is 115200, the minimum value is 300. Settings that
cannot be changed are parity (always: NONE), stop bit (always: 1) and data
bits (always: 8).

example: bd 19200

VCRT5 Software Manual of Operation System Functions

© 2010 Vision Components GmbH Ettlingen, Germany VCRT5.pdf

7

cd change path for working directory

synopsis cd <path>

description This command changes the path of the working directory. A valid path

consists of a drivename (fd: or md:) and an optional subdirectory structure.

 examples

cx change path for execution directory

synopsis cx <path>

description This command changes the path of the execution directory. A valid path

consists of a drivename (fd: or md:) and an optional subdirectory structure.

examples

copy copy file

synopsis copy <sourcepath> [<destpath>]

description This command copies a file to a different location. A valid path consists of a

drivename (fd: or md:), a subdirectory structure and a file-name. If the
destination path is ommited, the current directory is assumed.

examples

cd md:/my_directory/ selects directory "my_directory" on multi-media
card

cd fd: selects flash-EPROM
cd fd:/user/ selects flash-EPROM (user sectors)
cd fd:/sys/ selects flash-EPROM (system sectors)

cx md:/my_directory/ selects directory "my_directory" on
multi-media card

cx fd: selects flash-EPROM (user sectors)
cx fd:/user/ selects flash-EPROM (user sectors)
cx fd:/sys/ selects flash-EPROM (system sctrs.)

copy md:/my_directory/test.jpg copies test.jpg from directory
"my_directory" on MMC
to current data directory

copy fd:test.jpg md:/test.jpg copies file test.jpg from flash to
MMC

VCRT5 Software Manual of Operation System Functions

© 2010 Vision Components GmbH Ettlingen, Germany VCRT5.pdf

8

del delete file

synopsis del <path>

description A file can be deleted with the command del. A valid path consists of a

drivename (fd: or md:), a subdirectory structure and a file-name.
For the Flash EPROM (fd:), the file itself stays in the flash EPROM. It is only
marked as "deleted".

A "deleted" file still takes up space in flash memory. This memory space can
be used for other purposes after reorganizing the complete file system with
the 'pk' (pack) command or after erasing all files with the command er.

dir display directory of files

synopsis dir [<option>][<path>]

description The command dir creates a list of all files in the directory. The directory path

may either be specified directly or indirectly using options. A valid path
consists of a drivename (fd: or md:) and the subdirectory structure.

 The following information is shown:
 1. file name and extension
 2. total length in bytes (decimal)
 3. time and date of last write access(not shown for fd:)

 Calling dir without options lists all files in the default directory chosen with cd

 Options:
 -x list system files (in sector 0) on fd:
 -a list all files including deleted files on fd:

examples

dir Outputs a list of files of the working directory
dir -x Flash system directory
dir md: Directory of device md:
dir md:/sub List subdirectory md:/sub

!

VCRT5 Software Manual of Operation System Functions

© 2010 Vision Components GmbH Ettlingen, Germany VCRT5.pdf

9

disp switch display modes / gamma / period

synopsis disp [<option>][<mode>]

description The command disp changes the display mode and display period It also

allows to show and set the gamma value for all cameras. There are several
options, some of which are not available for black-and-white cameras:

-c change color mode (color cameras only)
-g change gamma correction
-p change display period

 -a display active (1) / inactive (0)

 option –c:

This option changes the color mode for the display. Images can be displayed
in a variety of color formats including grey value output (black-and-white) and
YUV format (YCbCr)

0 IDLE
1 GREY
2 RGB
3 BAYER
4 BAYERGREY
5 YCBCR

example disp -c 5 change to YCbCr display

 option –g:

This option allows to set the gamma correction for the display. Display
monitors normally have a non-linear, mostly logarithmic transfer function. You
can enter 100 times gamma with this command.
The default is 0.6 (set value is gamma*100 = 60). Called without a parameter,
the current value is shown.

example disp -g 100 change gamma to 1 (default is 0.6)

option –p:

This option changes the refresh rate (DISP_PERIOD) of the display. Display
refresh adds a certain overhead, which slows down the processing power of
the CPU. For black-and-white cameras, this overhead is mostly negligible,
since only memory transfers are involved, the CPU running at full speed. For
color cameras, however, the CPU must calculate the color conversion, which
is quite time consuming. A color conversion may take up to 60 milliseconds
depending on color mode and DSP type and speed grade. The refresh rate is
defined in units of the vertical retrace time which is typically 14 milliseconds
for an SVGA display. This command also changes the system variable
DISP_PERIOD.

VCRT5 Software Manual of Operation System Functions

© 2010 Vision Components GmbH Ettlingen, Germany VCRT5.pdf

10

The default for DISP_PERIOD is 20. Called without a parameter, the current
value is shown.

option -a:

disp –a 0 switches the display off. For VC20xx smart cameras this means
that there is no update of the video refresh buffer, i.e. the last image or video
graphic is “frozen”. For VC40xx and VC44xx smart cameras the video output
is simply black. In both cases, a switched-off video display does not consume
any memory bandwidth and therefore results in maximum computational
performance.
disp –a 1 switches the display an. This is the default state.
This option changes the refresh system variable DISP_ACTIVE.

Example disp -p 10 change refresh rate to 140 milliseconds

dwn download file to PC / flash EPROM

synopsis dwn <path>

description The command dwn sends a file in S-record format to a host PC. The

command returns the following message:

 please activate PC download function (e.g. PgDn–key)
 press ESC to abort or any other key to continue

The user should then activate the download function of the terminal program.
For PROCOMM this is done by pressing the PgDn key. Enter the protocol
(ASCII) and file name.

 Sending an arbitrary character (like RETURN) starts the sending procedure.

er erase / format Flash EPROM

synopsis er

description The entire flash EPROM can be physically erased (formatted) with the

command er (except for the system sectors 0 - 15). It is first determined if the
affected sector is already empty. If so, this is reported and the sector will not
be erased.

It's not possible any more to erase indiviual sectors from the shell. For
compatibility reasons, the function erase() is still available. Please use file
based functions instead.

VCRT5 Software Manual of Operation System Functions

© 2010 Vision Components GmbH Ettlingen, Germany VCRT5.pdf

11

ex exit from shell

synopsis ex

description This command is used to return from a shell to the calling program. Simply

type 'ex' and control will be passed to the calling program. If the shell has not
been called by a user program, ex has no effect.

 The former paths of "cd" and "cx" are restored.

fmt format media card

synopsis fmt [<size in MB> [<clustersize in blocks>]]

description This command is used to format the media device (the built-in multi media

card or SD-card). The default size is 16MB, i.e. calling the command without a
parameter will format the media card to 16MB regardless of its real size. For
larger sizes, the command may be called with its size as a parameter: 16, 32,
64, 128, … 1024 are allowed values for the size. If the value does not match a
value from the list, the default 16MB will be taken.
The second optional parameter is the clustersize in blocks (each block has
512 bytes). This value must be equal to or larger than 32.

he help command

synopsis he [<name>], or: ?, help

description he without parameters displays a list of all available commands. If the name of

a command from the list is included as a parameter, he displays the syntax for
the corresponding command.

ht hardware test

synopsis ht

description The function ht tests the hardware and displays a test screen. If an error

occurs during the test, this will be reported.

 ht performs the following individual tests:

1. processor test (mainly functionality of internal registers, memory, etc.)
2. DRAM test
3. ID and serial number
4. file system
5. VC/RT version of files (incompatible files will be deleted)
6. write a test pattern to image #0

VCRT5 Software Manual of Operation System Functions

© 2010 Vision Components GmbH Ettlingen, Germany VCRT5.pdf

12

Tests (1) through (5) are also executed on power-up as a self-test. If test (3)
fails (e.g. due to manipulations of the serial number) the system will be halted.
All other errors will be reported.

 The test screen consists of the following test areas:

 image data memory
 gray wedge
 4 alignment markers

 overlay
 - image boundary (yellow)
 - cross hair (green)
 - 4 centered frames of different size (blue, red, magenta)
 - 1 circle for monitor adjustments (yellow)
 - 4 translucent overlay areas (3 different colors = yellow, cyan, magenta)
 - text: "Vision Components"

jl jpeg load

synopsis jl <path>

description Entering jl <path> will load a previously stored JPEG image file to the

frame buffer.

example: jl fd:/mylogo.jpg

js jpeg store

synopsis js <path>

description Entering js <path> will store the complete image of the frame buffer

(memory page 0) to the JPEG file <path> on the flash eprom. The quality
factor for storing the image is 50%, which means that a data reduction of 10 to
20 may be assumed.

example: js fd:/mylogo.jpg

kill delete task

synopsis kill <PID>

description Entering kill <PID> will delete an active task with PID-number PID and

remove it from the task list. Be sure not to delete vital system tasks with this
command. You can get the task number using the procs command.

VCRT5 Software Manual of Operation System Functions

© 2010 Vision Components GmbH Ettlingen, Germany VCRT5.pdf

13

kl kernel log

synopsis kl

description This command outputs a “kernel log”, i.e. useful information that has been

stored during the execution of the kernel. If you have questions concerning the
kernel log output, please consult the Vision Components support.

lo load S Records / flash EPROM

synopsis lo

description Executable programs, ASCII files, binary data files, JPEG files, etc. can be

loaded from the host computer (PC) to the flash EPROM with the command
lo.
This command is especially important when developing programs. The
program first finds the next free memory area in the flash EPROM, and the
upload can begin. The data files must be sent (e.g. using the TERATERM
communication program) in the S-Record HEX data format.

with this command, programs can only be stored on the FLASH Eprom, i.e. an
upload to the media card / SD card is not possible.

You can also download programs efficiently using ftp on VC cameras with
Ethernet. Refer to the “Getting Started VC Smart Cameras with TI DSP”
Manual for details

mdir display module directory usage

synopsis mdir [<option>][<MID>]

description This command may be used to control the usage of the module directory.

Entering mdir without option will display a summary of used modules.

Options: -v detailed display of modules in use

Entering mdir with a module ID (MID) as a parameter gives a detailed display
of the module with the specified MID

examples $mdir

display module directory
MID PID STATE LINK SIZE NAME
1 65545 2 0 0x1d58b shell

$mdir 2
display module directory

!

VCRT5 Software Manual of Operation System Functions

© 2010 Vision Components GmbH Ettlingen, Germany VCRT5.pdf

14

MID PID STATE LINK SIZE NAME
2 65547 2 0 0x1d58b shell

SECTION ADDRESS SIZE ENTRY STACKSIZE
0 0xa0494174 0x195a3 0xa04ac580 0x4000
3 0xa030a774 0x13b
5 0xa030b4b4 0xdbf
6 0xa030c294 0x208f
8 0xa030e334 0xc53
10 0xa030a8d4 0x143
11 0xa030aa34 0xe3
12 0xa030ab34 0x123
13 0xa030ac74 0xc3

mem display memory usage

synopsis mem [<option>][<PID>]

description This command may be used to show the memory usage of both the operating

system and user programs e.g. for debugging purposes.

Entering mem without option will display a summary of used and free memory
blocks.

options -v detailed display of memory segment usage

Entering mem <PID> lists the memory usage for the task with the process ID
PID .

example

$mem 65546
display memory usage
ADDR PID SIZE STATE CHECKSUM
0xa0462280 65546 0x40 USED OK
0xa0462400 65546 0x440 USED OK

178 mem blocks (use -v to show all)
0x00167040 bytes in use (4%)
0x01b983a0 bytes free (96%)

VCRT5 Software Manual of Operation System Functions

© 2010 Vision Components GmbH Ettlingen, Germany VCRT5.pdf

15

ping test IP communication

synopsis ping <IP-address>

description The command ping tests the communication response of the IP device with

IP-address. The command tests the communication in a loop until ESC is
entered. rtt is the round-trip time, i.e. the time delay from sending the
request to receiving the response.

example $ping 192.168.0.99
 ping host IP
 192.168.0.99 seq=0 rtt=5 ms
 192.168.0.99 seq=1 rtt=1 ms
 192.168.0.99 seq=2 rtt=1 ms
 192.168.0.99 seq=3 rtt=1 ms
 192.168.0.99 seq=4 rtt=3 ms <ESC>
 $

pk pack flash memory

synopsis pk

description The command pk physically purges deleted files from the flash eprom file

system. The command allocates memory from DRAM, copies files to DRAM
memory, while discarding deleted files, erases all previously used flash eprom
sectors and then writes back the files to flash eprom.
Since the command may erase a large number of sectors, execution may take
from 5 to 30 seconds, so please be patient.

The command will fail, if there is not enough memory available. This may
happen if memory was allocated by a user program, but not freed.

procs print task list

synopsis procs

description The command procs outputs a list of all tasks currently registered to the

system. The command gives the following information for the task:

Task name Process ID state priority flags

 The task state may be ACT = active or WAIT = waiting.
 A higher value for priority, means that the task is lower in its priority.

!

VCRT5 Software Manual of Operation System Functions

© 2010 Vision Components GmbH Ettlingen, Germany VCRT5.pdf

16

time display system time

synopsis time [<option>]

description VC/RT for VC20xx features a real time clock ("RTC") with battery backup.

GMT (Greenwich Meantime) is stored internally, but any local time may be
output by entering timezone and the daylight savings time flag.
Be sure to enter timezone and daylight saving time flag before changing the
time setting.

The battery used is rechargeable. If fully loaded and temperatures are below
40 C it will keep the RTC working for at least 14 days . The RTC may function
well for a much longer period depending on temperature, initial charge, battery
age and device tolerances but this cannot be guaranteed. In the case of
battery failure the time command will output:

 low voltage detected
 clock data may be invalid

 In this case the RTC must be set again.

 The option "-x" displays the internal board temperature (in degrees Celsius)

Options: -t display time
 -d display date
 -x display board temperature
 -s set real time clock
 -z set local timezone and daylight savings time flag

timezones: GMT -11 Samoa
 GMT -10 Hawaii
 GMT -09 Alaska
 GMT -08 USA Pacific
 GMT -07 USA Mountain
 GMT -06 USA Central
 GMT -05 USA Eastern
 GMT -04 Canada Atlantic
 GMT -03 Brazil
 GMT +00 Greenwich, London
 GMT +01 Berlin, Stockholm, Rome, Paris, Madrid
 GMT +02 Athens, Helsinki, Instanbul, Israel
 GMT +03 Kuwait, Moskau
 GMT +04 Abu Dhabi
 GMT +05 Islamabad
 GMT +06 Dakka
 GMT +07 Bangkok, Jakarta, Hanoi
 GMT +08 Hongkong, Singapore
 GMT +09 Tokio, Osaka, Seoul
 GMT +10 Sydney
 GMT +11 New Caledonia
 GMT +12 Auckland, Wellington

VCRT5 Software Manual of Operation System Functions

© 2010 Vision Components GmbH Ettlingen, Germany VCRT5.pdf

17

example

 $time
 time and date command
 temperature: 54.0 C
 current timezone: +01
 daylight saving time: ON
 time: 14:55:20
 date: 12/31/00

 $time -s
 time and date command
 current timezone: +01
 daylight saving time: ON
 time: 14:56:00
 date: 12/31/00

 input timezone +00 >+01
 input daylight saving time
 press 'SPACE' to change setting, 'ENTER' to enter
 daylight saving time ON
 input date MM/DD/YY >12/31/00
 input local time HH:MM:SS >14:56:00

tp take picture

synopsis tp

description The command tp takes a picture. The system then switches to frame

reproduction, to display the frame stored in memory. (Note: When powered
up, the camera always shows the so-called live-video from the CCD sensor)
The taken picture is stored in the memory area specified with the command
vd .

type type ASCII file

synopsis type <path>

description type lists ASCII files. The filename of the file to be listed is specified as the
 parameter.

example An example of an ASCII file in the flash EPROM is the command file

"autoexec" which is interpreted as soon as the camera is powered up.

 type fd:\autoexec

VCRT5 Software Manual of Operation System Functions

© 2010 Vision Components GmbH Ettlingen, Germany VCRT5.pdf

18

sh set shutter value

synopsis sh <number>

description The camera's electronic shutter is set with the command sh.The parameter is

a decimal value in microseconds. Please note, that not all shutter values are
allowed, depending on the camera model.

 Please refer to the camera's technical documentation.

examples sh 1000 select 1 millisecond shutter time
 sh 10000 select 10 milliseconds shutter time
 sh 1000000 select 1 second shutter time

Since not all shutter values are available, the command replies with the
closest value which could be set.

ver display VC/RT version

synopsis ver

description This command displays the VC/RT operating system version and release

number.

example ver

 result:

 print software version
 Version Version 5.24 Apr 6 2006

FPGA Version 2006/04/03 11:08:36
 SENSOR C4SEN204 CPLD Version: 1

vd set video modes

synopsis vd [[<option>] <frame number>]
 vd [-g <gain>]

description The video modes can be changed with vd. The following options are available:

 no option live mode/real frame
 -l live mode/real frame
 -d display memory contents
 -g set gain

Live mode shows the image from the CCD sensor. This mode is equivalent to
the function of a standard video camera.

Optionally, a page of the video memory can be selected. The number of video
memory pages available may vary, depending on the frame size camera type
and the memory size.

VCRT5 Software Manual of Operation System Functions

© 2010 Vision Components GmbH Ettlingen, Germany VCRT5.pdf

19

different from the VCxx cameras, on the VC20xx cameras live mode
always stores the image in memory. This is valid esp. for vmode(0).

wb white balance

synopsis wb

description The command wb performs a white balance for color cameras. It is not

available for black-and-white cameras and not for cameras with the serial
number of a black-and-white camera and a color sensor as a special option.

 this command is only available for color cameras!

Procedure:

1. The user enters wb
2. The shell responds with:

Please place white object inside yellow frame
and select a brightness between 100 and 180
Press any key for start and end

3. The camera enters the interactive mode and displays the average grey

value of the region inside the yellow overlay frame.
4. Place a white or grey (colorless) object (e.g. a piece of paper) under the

camera covering the complete area inside the yellow overlay frame
5. Adjust brightness (iris of the lens, illumination) so that the average

brightness displayed is between the limits (100 and 180). If the values are
higher, the values for RGB might be saturated. If the values are lower, the
white balance might be inaccurate.

6. If step 5 is not possible, hit a key to exit the interactive mode. Change the
shutter setting with the sh – command and repeat steps 1-5.

7. Press any key to exit the interactive mode. The white balance values are
calculated, output on the console, stored as system variables (RED,
GREEN, BLUE) and the input color lookup table is programmed.

8. If you type vd after the shell’s $-promt to get a live image, you will notice
that the tint of the image has changed.

!

!

VCRT5 Software Manual of Operation System Functions

© 2010 Vision Components GmbH Ettlingen, Germany VCRT5.pdf

20

6 The Operating System Functions
6.1 Use of exec()

The operating system call exec() can be used to dynamically postload programs from the flash
EPROM or MMC/SD-Card to the processor's memory.
The program will only require a few milliseconds to postload, depending on its size. Thus, this is
suitable for real-time operations.
Parameters can be passed to the called program, like for C subroutines. When the called program
terminates, a return value is returned to the calling program, as usual. After the called program
terminates, the calling program is reloaded to memory and processing continues where it was
interrupted by the function call.
The entire procedure is quite similar to how C subroutines are called, which is an aid to the user.

The following briefly lists the differences to subroutine techniques.

 Dynamic postloading Subroutine techniques
The function itself is named "main()"
It is called by its filename (=subroutine name)

Subroutine can be given any name.
Name identical when called

Call the program with the function
"exec(name,p1,p2,...pn); "
p1,p2,...pn are the parameters

Direct call by specifying the program name, e.g.
"prog(p1,p2,...pn);"

There are several small programs; each is linked
only with the subroutines it
requires, shortening linking time

There is one large program, which must be
linked with all required subroutines and library
functions

Individual (sub-)programs can be replaced
quickly and easily, e.g. for testing purposes

The program must always be compiled and
linked with the subroutine

Postloading requires CPU time All subroutines are always available
immediately

The following is an example for a called program:

 int main(int p1,int p2,...int pn)
 {
 }

 p1,p2,...pn are the parameters passed by exec

Parameters p1, .. pn are restricted to 32bit values (e.g. int, int *, etc.) "long" values
(these are 40 bit !!!) are not supported. The maximum number of parameters is 8
The stack size cannot be changed by the linker command file (cc.cmd) for exec()

Absolute linked programs are usually loaded starting at memory address 0xA0200000. All user
programs including the shell and all absolute linked programs called by exec are loaded this way.

Advanced users may change the *.cmd file to load programs to a different address.

Since of VCRT Release 5.23 it is possible to use relocateable linked programs. The address where
these programs will be loaded is determined by the loader at run-time and depends on the memory
layout of the VCRT system.

Most programs use initialized variables (string constants, global variables and statics). These
variables are initialized to a value which is precalculated at compile-time each time the program is
loaded (e.g. by exec).

!

VCRT5 Software Manual of Operation System Functions

© 2010 Vision Components GmbH Ettlingen, Germany VCRT5.pdf

21

The following rules must be obeyed:

• Loading of one program replaces others (e.g. the shell) at the same address
• Global variables, statics and string constants don't survive because they are initialized

every time loaded.
• The stack survives (i.e. local variables) (Because not initialized).
• The vcmalloc-area survives (Because not initialized).
• The DRAMmalloc area survives, (Because not initialized).
• Flash EPROM areas survive (Because not initialized)

6.2 Use of exec2() for starting new tasks

int exec2(char * fname, …);

The system functions exec1() and exec2() are used to start a new process in the background.

Note: You should not use exec1() anymore, it exists only for compatibility purposes.

Before you execute exec2() you could tune the priority of the task you want to start next with the
system variable TPRIORITY (default priority is 9)

Furthermore you could also tune the timeslot for the new task with the system variable TIME_SLICE
(default time slice is 10 ms). A value of 0 for the TIME_SLICE variable tags the new task scheduler
scheme as FIFO instead of ROUND ROBIN.

The return value of exec2() is either 0 if the new process could not be created or a 32 bit Value
representing the task id of the newly started process.

The following is a sample for a called program:

 int main(int p1,...int pn)
 {
 }

 p1...pn are the parameters passed by exec2

Parameters p1, .. pn are restricted to 32bit values (e.g. int, int *, etc.) "long" values
(these are 40 bit !!!) are not supported. The maximum number of parameters is 2 !
With relocateable code and exec2() you can use a bigger stack size than with exec()
because the stack is allocated by the loader as specified in the linker command file
(cc.cmd) !

!

VCRT5 Software Manual of Operation System Functions

© 2010 Vision Components GmbH Ettlingen, Germany VCRT5.pdf

22

6.3 Use of events

If you don’t want to poll for external or internal events, you can use the VCRT event system.

void event_connect_to_task(void);
void event_disconnect(void);
int set_evt(int id);
int wait(int id, int timeout);

If you run your program not as an extra task, your program could directly use the wait() function of
the event system to wait for a special event without wasting system resources.

You can give a timeout value for wait() to make sure it will be terminated within this timeout time
frame.

The return values of wait()
 1 the event occurred
 2 the event has occurred before wait() was called
 –1 indicates a timeout has occurred

If you run your program in the background as an extra task you have to first connect this task to the
event system by calling event_connect_to_task()function !

If you exit this task you should call event_disconnect() to free some memory used by the event
system.

The currently available events are listed in VCRT.H

#define TIMER 0
#define MM_CARD 1
#define IMAGE_READY 4
#define EXP_READY 5
#define DHCP_READY 6
#define TRIG_READY 7
#define PLC_INT 8
#define I2C_INT 9
#define TIMER2 10
#define DISPLAY_EVT 11

TIMER is the NULL-event, i.e. only the timeout feature is used
MM_CARD is an event internally used for the media card. Since this event is necessary for media

card access, tasks that access the media card MUST connect to the event system by
the event_connect_to_task()function.

IMAGE_READY signals that an image capture has completed
EXP_READY signals that the exposure of an image has finished. This always happens before the

image is stored in memory, i.e. the event EXP_READY always comes prior to the event
IMAGE_READY.

DHCP_READY Used internally for DHCP
TRIG_READY Event generated by the trigger input (or, if configured by the incremental encoder)
PLC_INT This event is set, when there is a change on the external PLC inputs
I2C_INT Used for I2C communication (for SBC4018 only)

VCRT5 Software Manual of Operation System Functions

© 2010 Vision Components GmbH Ettlingen, Germany VCRT5.pdf

23

TIMER2 Event for TIMER2 (not available for VC20xx smart cameras). Event is set, when
TIMER2 counts down to 0.

DISPLAY_EVT This event signals the vertical retrace period of the video display, where the display is
refreshed. The time between the display-events depends on the VGA / SVGA / XVGA
video standard used. For a 70 Hz video refresh it is 14.28 msec.

If you want to use your own events you should use a free event number not already
used in VCRT.H ! This can be done using the system variables USR_EVENT and
USR_EVT_LAST. See the system variable chapter for detailed documentation.

To signal an event you must use the set_evt() routine - i.e. set_evt(MY_EVENT);

All events (currently 0..31) are available for all tasks connected to the event system.

6.4 Use of compressed executeables

If you want to store a program file in the flash device which is too big to fit in there, you can compress
the .out file with a special tool called VCZIP (see VC-Download-Support).

The resulting “.cex” file (compressed executeable) will be decompressed and executed automatically
when you start the file with its name. Since executables with the same name and the extension .exe or
.000 are searched first, be sure to have only the .cex file on the drive.

How to make ZIP files for VC20XX and VC40XX cameras.

Using the VCZIP utility, program files can be compressed to about 40% of the original "*.out" file size.
The .cex file gererated for FTP upload is already of its final size. The .msf file generated is about the
size of the input .out file, however in flash memory the resulting program file is compressed with the
same compression ratio.

Follow these steps in order to compress a linker output "*.out" file:

1) Unzip all files from "vczip.zip" in one folder.
2) Copy the file you want to compress in the folder (example "new.out")
3) call the function vczip with the corresponding file name

example: vczip new

4) upload the .msf file ("new.msf") to the camera via RS232 or Telnet.
 Alternatively, upload the "new.cex" file into the camera memory using FTP.

5) Either way the newly uploaded file will show the file extension .128
 in the flash memory or .cex on the SD-card

6) start the program as usual, by calling the program name from the shell or
 an autoexec file.

VCRT5 Software Manual of Operation System Functions

© 2010 Vision Components GmbH Ettlingen, Germany VCRT5.pdf

24

6.5 Overview of the VCRT Library Functions

Wherever necessary, the library functions described below can be linked to any C program.

• memory allocation functions
• flash eprom file functions
• I/O functions (RS232, screen, PLC, Ethernet)
• DRAM access functions
• Functions for processing pixel lists
• video control functions
• rs232 functions
• Flash EPROM access functions
• utilities
• TCP/IP functions (separate documentation)
• lookuptable functions
• time related functions

6.6 Memory Allocation Functions

Allocation of memory is supported by a series of functions. For the heap space the functions
sysmalloc() and sysfree() may be used which very closely resemble the original K & R routines
malloc() and free(). The system memory allocation is initialized on power-up. The functions vcmalloc()
and sysfree() provided in earlier versions of VC/RT are kept but are based on sysmalloc() and
sysfree() using macros.

vcmalloc user memory allocation
vcfree user memory release
sysmemfree returns amount of available user memory
sysmalloc system memory allocation
sysfree system memory release

DRAMScreenMalloc allocate DRAM memory for full screen storage

vcmalloc user memory allocation (macro)

synopsis void *vcmalloc(unsigned int size)

description vcmalloc() allocates heap memory in the processor's data memory

segment. size is the size of the requested memory area in words (int=32
bits).

This function returns a pointer to the allocated memory area. If the requested
memory is not available as a coherent block, the returned value is the null
pointer.

vcmalloc() is basically equivalent to the function malloc(), which most
systems provide as a runtime library function but its allocation unit is a WORD,
not a BYTE.

VCRT5 Software Manual of Operation System Functions

© 2010 Vision Components GmbH Ettlingen, Germany VCRT5.pdf

25

The use of malloc() from the runtime library of the TI cross-development
system is also possible. In this case, the memory is allocated from the task’s
heap. The heapsize must be configured accordingly for the linker command
file cc.cmd in this case.

see also vcfree(), sysmalloc()

vcfree user memory release (macro)

synopsis void vcfree(void *ptr)

description The function vcfree() releases the memory allocated by vcmalloc() for

further use.

vcfree() is basically equivalent to the function free(), which most systems
provide as a runtime library function.

The use of the function free() from the runtime library of the TI cross-
development system is also possible for heap memory which was allocated
with malloc().

example #include <vclib.h>

 int *p;
 p = (int *)vcmalloc(100);
 blrdb(50, p, 0L);
 vcfree(p);

see also vcmalloc(), sysmalloc()

sysmemfree returns amount of available user memory

synopsis int sysmemfree(void)

description The function sysmemfree() returns amount of the available system memory.
 This can be a useful programming routine, especially in the test phase.

see also vcmalloc(), vcfree()

!

VCRT5 Software Manual of Operation System Functions

© 2010 Vision Components GmbH Ettlingen, Germany VCRT5.pdf

26

sysmalloc system memory allocation

synopsis void *sysmalloc(unsigned nwords, int type)

description sysmalloc() allocates system memory in the processor's SDRAM memory.
 nwords is the size of the requested memory area in words (int=32 bits).

 This function returns a pointer to the allocated memory area.

 type is the type of memory requested. The following tables gives an overview
 of the various memory types:

Type Mnemonics Usage
0 MTEXT Program
1 MSTACK local variables, stack
2 MDATA global variables & heap
3 MIMAGE image data

 The reason for this segmentation into 4 different memory spaces is that the
 DSP is able to keep one page open for each of the 4 different segments. A
 copy e.g. from stack to data space could then be performed at the highest
 possible speed without unnecessary page access cycles (RAS) for the
 memory. At the same time the text segment could be accessed for executable
 machine code.

 the memory-type is currently not used!

 sysmalloc() tries to return a pointer to the requested type and size of
 memory. It is allowed to return a pointer to a different memory type in case the
 requested type has not enough space. If the requested memory is no longer
 available as a coherent block, then the function will return the null pointer.

see also vcfree(), sysfree()

!

VCRT5 Software Manual of Operation System Functions

© 2010 Vision Components GmbH Ettlingen, Germany VCRT5.pdf

27

sysfree system memory release

synopsis void sysfree(void *ap)

description The function sysfree() releases the memory allocated by sysmalloc()
 for further use by the operating system.

example #include <vcrt.h>

 int *p;
 p = (int *)sysmalloc(1000,2);
 blrdb(50, p, 0L);
 sysfree(p);

see also vcfree(), sysmalloc()

DRAMScreenMalloc allocate DRAM memory for full screen storage (macro)

synopsis U8 *DRAMScreenMalloc(void)

description The function DRAMScreenMalloc() allocates SDRAM memory for one
 screen of video display + 1024 bytes. It returns the start address of the
 allocated memory block. This start address may be used to instruct the video
 controller to display the memory area on the video monitor. Be sure to align
 the address to a multiple of 1024 for this purpose.

 The macro can be found in macros.h . NEW_IMAGE_VAR must be defined
 for his macro to output a U8 address, otherwise it returns I32 as result.

 This function can also be used to allocate overlay memory.

example
 #define NEW_IMAGE_VAR
 #include <macros.h>

 U8 * addr = DRAMScreenMalloc();
 setvar(DISP_START, (addr+1024) & ~1023);

VCRT5 Software Manual of Operation System Functions

© 2010 Vision Components GmbH Ettlingen, Germany VCRT5.pdf

28

6.7 General I/O Functions

Files and I/O devices are accessed by means of generalized I/O functions. This is a new feature for
VC/RT 5.0x with respect to earlier versions.

We strongly recommend the use of these functions instead of direct functions (like search, fnaddr,
etc.). The latter will be kept for a while for compatibility purposes.

The following functions are available:

io_fopen open a device, get file pointer
io_fclose close device
io_read read from device
io_write write to device
io_ioctl control function
io_fgetc get character from device
io_fputc put character to device
io_fseek set file position
io_get_handle get a pointer to the default standard I/O stream
io_pipe_install Install a pipe device

The standard procedure for file operations is as follows:

 io_fopen()

 /* ... one or more file operations ... */

 io_fclose()

The operation io_fopen() locks a file for access from other tasks depending on the access mode and
allocates some buffers for that file. io_fclose() frees the memory used and unlocks the file so that it
may be used subsequently by another task. For this reason we recommend using the function
io_fclose() immediately when access to the file is no longer necessary.

The following devices are available:

Name Device Type Description
fd: block Flash EPROM file device
md: block Multi Media or SD-card device
ittya: char Serial communication channel for serial VC20xx cameras / not available

for VC40xx cameras
kbd: char Serial keyboard channel for VC20xx cameras / Serial channel for

keyboard and other devices for VC40xx cameras
telnet: char Telnet communication channel for all Ethernet cameras
socket: network Internal network channel. Do not use !
dbg: pipe Debug pipe, used by kl shell command
t0: pipe Internal Pipe for telnet communication. Do not use !
t1: pipe Internal Pipe for telnet communication. Do not use !
x1: pipe Internal Pipe for decompression. Do not use !

char and pipe devices are not buffered, block devices are buffered (standard buffer size: 4096 bytes)

VCRT5 Software Manual of Operation System Functions

© 2010 Vision Components GmbH Ettlingen, Germany VCRT5.pdf

29

The following restrictions apply:

Drive Access Mode Operation
fd: Read Unlimited number of read accesses to same file

 Write Access to only 1 file in total for write
md: Read Unlimited number of read accesses to same file

 Write Access to file is locked for other tasks
An unlimited number of files may be open for write

“pipe”: Read Access to only 1 pipe in total per devicename
 Write Access to only 1 pipe in total per devicename

For special I/O operations the function io_ioctl() may be used. Here, a drivename, path or file must be
opened with io_fopen() and mode="c". Then the io_ioctl() is performed. Finally the function
io_fclose() must be called.

io_fopen open a device, get file pointer

synopsis FILE *io_fopen(char *path, char *mode)

description The function io_fopen() opens a device / file / directory with the pathname

given by path.

 It returns the filepointer if successful or NULL if not.

 It is possible to open the device with the following mode-strings:

 mode = "r" read
 "w" write
 "c" control
 "a" append

io_fclose close a device

synopsis int io_fclose(FILE *fp)

description The function io_fclose() closes a device / file / directory previously opened

with io_fopen.
 The function returns 0 for successful operation or otherwise an error number,

which depends on the driver for the selected device.

VCRT5 Software Manual of Operation System Functions

© 2010 Vision Components GmbH Ettlingen, Germany VCRT5.pdf

30

io_read read from device

synopsis int io_read(FILE *fp, char *buf, int cnt)

description The function io_read() reads from a device / file previously opened with

io_fopen.

 cnt is the number of bytes,
 buf is a pointer to a buffer to store the data.

 The return value of the function is the number of bytes transferred if

successful or else -1.

io_write write to device

synopsis int io_write(FILE *fp, char *buf, int cnt)

description The function io_write() writes to a device / file previously opened with with

io_fopen. cnt is the number of bytes, buf is a pointer to a buffer of data to
be written. The return value of the function is the number of bytes transferred
if successful or else -1.

io_ioctl I/O control

synopsis int io_ioctl(FILE *fp, unsigned cmd, void

*param)

description The function io_ioctl() is used for various device control functions.

 cmd is a command code to request a certain function, param is a pointer to a

variable or struct, where information may be passed from the calling routine
to the function or vice versa.

VCRT5 Software Manual of Operation System Functions

© 2010 Vision Components GmbH Ettlingen, Germany VCRT5.pdf

31

 Here is a list of available functions

device cmd function param
ittya:, kbd: IO_BAUD_SET set baud rate &baud
 IO_BAUD_GET get baud rate &baud
 IO_RTS_SET set RTS to 1 *) NULL
 IO_RTS_CLR set RTS to 0 *) NULL
 IO_IOCTL_SERIAL_GET_FLAGS get communication flags &flags
 IO_IOCTL_SERIAL_SET_FLAGS get communication flags &flags
fd: IO_PACK pack &result
 IO_ERASE erase &result
 IO_READDIR read directory READDIR
 IO_CHKSYS check system NULL
 IO_DEL delete file NULL
 IO_REMAIN remaining device space &size
md: IO_READDIR read directory READDIR
 IO_DEL delete file NULL
 IO_MKDIR make directory NULL
 IO_REMAIN remaining device space &size
“pipe”: IO_PIPE_CHMOD change mode &mode
 IO_PIPE_CHSIZ change size and reset pipe &size
 IO_PIPE_RDFLAGS read out mode flags &flags
 IO_PIPE_GETCOUNT get number of characters &num
 IO_PIPE_SIZE size of pipe &size

*) For cameras with serial hardware handshake only (VC20xx)

io_fgetc get character from device

synopsis int io_fgetc(FILE *fp)

description The function io_fgetc() inputs a character from the device fp. If an End-Of-

File condition is encountered, -1 is output instead of a character

io_fputc output character to device

synopsis int io_fputc(int c, FILE *fp)

description The function io_fputc() outputs a character to the device fp.

 The return value of the function is equal to the character c written or a

negative error condition.

VCRT5 Software Manual of Operation System Functions

© 2010 Vision Components GmbH Ettlingen, Germany VCRT5.pdf

32

io_fseek set the file position

synopsis int io_fseek(FILE *fp, int offset, unsigned

start_from)

description The function io_fseek() positions the read-filepointer to the position specified

with offset.

 On success the function returns 0.

 The following values are possible for start_from:

IO_SEEK_SET offset
IO_SEEK_CUR current_position + offset
IO_SEEK_END file_size + offset

io_get_handle get a pointer to the default standard I/O stream

synopsis FILE *io_get_handle(unsigned stdio_type)

description The function io_get_handle() returns a pointer to the default standard I/O

stream.

 If unsuccessful, NULL is returned.

 stdio_type may be any of the following values:

 IO_STDIN
 IO_STDOUT
 IO_STDERR

io_pipe_install install a pipe device

synopsis I32 *io_pipe_install(char *name, U32 size)

description The function io_pipe_install() installs a pipe device with name and
 size in bytes.

example io_pipe_install("pipe0:", 1000);

 It is possible to install an arbitrary number of pipes with different names. Do
 not use a name more than once !
 A pipe can only be opened once for writing and once for reading. Trying to
 open a pipe a second time for a given mode will return an error code for
 io_open().

!

VCRT5 Software Manual of Operation System Functions

© 2010 Vision Components GmbH Ettlingen, Germany VCRT5.pdf

33

6.8 Program execution

exec load and execute a program
exec2 load/execute as a parallel task

exec Load and execute a program

synopsis exec (char *path, p1,p2, ... , pn)

description With the function exec(), programs (subroutines) are loaded from the Flash
 EPROM or from the media card / SD-card to the SDRAM memory of the DSP
 and executed. First, the path (char * path) is used to search for the file. If
 the file is found, the loading and starting process begins. If the file is not
 found, a soft reset is invoked. Thus, make sure the file can always be found
 (e.g. with the function io_fopen()).

 Up to 8 (int) parameters can be passed to the program, as p1, p2, ... , pn.
 All parameters are restricted to 32 bit values (e.g. int, int *) "long"-values are
 not supported, as they are 40 bit.

 When the program terminates, the calling program will automatically be
 loaded back into memory. Integer (32 bit) values can be returned to the calling
 program.

 The following applies for the called program:
 Its name is:

 int main(int p1, int p2, ... , int pn)
 {
 }

 where p1,p2,...pn are the parameters passed over from exec.

 The function exec() can be used to dynamically postload subroutines from
 a main program. Subroutines loaded via exec() may be nested. Naturally, the
 size of the stack limits the level to which subroutines can be nested.

 If many parameters must be passed to the function called by exec(), a pointer
 to a struct on the stack or on the heap may pe passed alternatively. Keep in
 mind that pointers use 32 bits. They will therefore fit easily in the space of an
 int (32 bits). The called program may also modify the struct's items.

 Do not try to pass string constants to a function called by exec(). Since string
 constants are represented by a pointer to initialized memory areas, the string
 information may be lost (overwritten) when the function is called.
 If you have to pass strings, then copy them to a local variable first and pass
 the local variable or it's address instead.

example DO NOT !!! exec("myprog","this string should not be here")

VCRT5 Software Manual of Operation System Functions

© 2010 Vision Components GmbH Ettlingen, Germany VCRT5.pdf

34

exec2 Load and execute a program as a parallel task

synopsis int id=exec2 (char *path, p1,p2, ... , pn)

description With the function exec2(), programs (subroutines) are loaded from the

flash EPROM to the SDRAM memory of the DSP and executed as an extra
task. First, the path (char * path) is used to search for the file. If the file is
found, the loading and starting process begins. If the file is not found, a soft
reset is invoked.

 Thus, make sure the file can always be found (e.g. with the function
io_fopen()). The return value is 0 in case the new task could not be
started or a int value representing the task id. Up to 2 (int) parameters can
be passed to the program, as p1, ... , pn.

VCRT5 Software Manual of Operation System Functions

© 2010 Vision Components GmbH Ettlingen, Germany VCRT5.pdf

35

6.9 I/O Functions

pstr Output a string via the serial interface
print Formatted output of text and variables
sprint Formatted output of text and variables to a string
hextoi convert hexadecimal value string to integer
setRTS set RTS signal (macro)
resRTS reset RTS signal (macro)
setPLCn set PLC signal (macro)
resPLCn reset PLC signal (macro)
outPLC output value to PLC
inPLC input value from PLC (macro)

pstr Output a string via the serial interface

synopsis void pstr(char *str)

description This function outputs the string specified by the pointer str via the serial

interface. This function differs from the function print() in that pstr() must not
contain format control characters such as %.

 For the ASCII character LF (0x0a or '\n'), a combination of CR (0x0d or '\r')
and LF is output.

print Formatted output of text and variables

synopsis void print(char *format, ...)

description This function is a full-featured version of the standard function printf().

 The following is a list of formats supported:

 format-string

remark

%d decimal number / 32 bits
%u unsigned decimal number / 32 bits
%x, %X hex number / 32 bits
%o octal number / 32 bits
%ld, %lu, %lx, %lo same as above for 40 bit long values
%hd, %hu, %hx, %ho same as above for 16 bit short values
%c character
%s string
%p pointer / 32 bits
%n number of arguments
%f floating-point (double)
%e floating-point (double)
%g not implemented
* variable number of arguments

 The text and variables are output via the serial interface, resp. Ethernet port..

VCRT5 Software Manual of Operation System Functions

© 2010 Vision Components GmbH Ettlingen, Germany VCRT5.pdf

36

 Since the argument list is variable (...), print() only works properly if the
correct prototype is included in the user program. This can be done, for
example, by adding the following line:

 #include <vcrt.h>

see also sprint(), pstr()

sprint Formatted output of text and variables to a string

synopsis void sprint(char *s, char *format, ...)

description The function sprint() is equivalent to the function print(), however the output

is directed to the passed string s.

 This can be used, for example, to prepare the output of data on the screen.

 Since the argument list is variable (...), sprint() only works properly if the

correct prototype is included in the user program. This can be done, for
example, by adding a line

 #include <vcrt.h>

see also print()

hextoi convert hex value string to integer

synopsis int hextoi(char *s)

description The '\0' terminated character string s containing the hexadecimal value is

passed to the function. The function then converts it to an integer value.

setRTS set RTS signal (macro)

synopsis void setRTS(void)

description This macro sets the RTS output of the V24 (RS232) interface to a positive

voltage. This allows communication, i.e. characters are allowed to be sent to
the camera from the connected computer. Make sure that the host computer
is switched to "hardware handshake" if you want to use this feature

 Hardware handshake is available only for the serial

version of the VC20xx smart cameras.

!

!

!

VCRT5 Software Manual of Operation System Functions

© 2010 Vision Components GmbH Ettlingen, Germany VCRT5.pdf

37

resRTS reset RTS signal (macro)

synopsis void resRTS(void)

description This macro resets the RTS output of the V24 (RS232) interface to a negative

voltage. This shuts down communication, i.e. characters are not allowed to
be sent to the camera from the connected computer. Make sure that the host
computer is switched to "hardware handshake" if you want to use this
feature

 Hardware handshake is available only for the serial

version of the VC20xx smart cameras.

setPLCn set PLC signal (macro)

synopsis void setPLCn(void)

description This macro sets the PLC signal no. n, so that current is flowing through the

corresponding output. The signal will have a positive voltage.

example setPLC0(); /* switch on output 0 */
 setPLC1(); /* switch on output 1 */

setPLC2(); /* switch on output 2 */
setPLC3(); /* switch on output 3 */

resPLCn reset PLC signal (macro)

synopsis void resPLCn(void)

description This macro resets the PLC signal no. n, so that no current is flowing to the

corresponding output. The signal will be high-impedance.

example resPLC0(); /* switch off output 0 */
 resPLC1(); /* switch off output 1 */
 resPLC2(); /* switch off output 2 */
 resPLC3(); /* switch off output 3 */

outPLC output value to PLC

synopsis void outPLC(value)

description This function outputs value to the PLC. The function also writes the value to

the system variable PLCOUT where the state of the output signals can be
monitored at any time. Bits 0 to 3 of value will set the corresponding output
signals.

If more than 4 outputs are necessary, Beckhoff I/O modules may easily be
connected to VC smart cameras. See the separate documentation for usage.

!

VCRT5 Software Manual of Operation System Functions

© 2010 Vision Components GmbH Ettlingen, Germany VCRT5.pdf

38

inPLC input value from PLC (macro)

synopsis int inPLC(void)

description This macro inputs the status of the PLC input signals. Bits 0 to 3 indicate the

status of each individual PLC input. The remaining bits are always zero. A
zero on one of the input bits means that there is current flowing through the
corresponding PLC input. If there is no voltage on the input, the bit will be 1.

 The status of the PLC input bits can also be monitored using the system

variable PLCIN. This variable, however, features an additional status bit (bit
#4) which indicates failure of the PLC I/O processor when set to 1.

If more than 4 inputs are necessary, Beckhoff I/O modules may easily be
connected to VC smart cameras. See the separate documentation for usage.

VCRT5 Software Manual of Operation System Functions

© 2010 Vision Components GmbH Ettlingen, Germany VCRT5.pdf

39

6.10 Video Control Functions

capture_request put request for image capture into capture queue
capture_request2 capture_request with encoder support
cancel_capture_rq stop capture request
vmode Set video modes
tpict Picture taking function
tpp Picture taking function / progressive scan
tpstart Picture taking function / progressive scan
tpwait Wait for completion of picture taking function /

progressive scan
tenable Trigger enable for interrupt driven image acquisition
trdy Check the status of the picture taking function /

external trigger mode
shutter select shutter speed
SET_trig_lossy select "lossy" external trigger mode
SET_trig_sticky select "sticky" external trigger mode

capture_request put request for image capture into capture queue

synopsis int capture_request (int exp, int gain,

int *start, int mode)

description This is the most basic function for capturing an image on which all other

functions in this chapter like tpict or tpp are based. With this function, the user
is able to achieve the best performance for the video capture process.

It is possible for the image acquisition hardware, especially for the sensor to
process more than one image capture requests in parallel. It can read out one
image and transfer it to memory while exposing another one. So, the
maximum frame rate can be achieved. Of course there are some limitations:

The maximum frame rate can only be achieved if the exposure time is less
than the read-out time. Otherwise, the maximum frame rate is determined by
the exposure time.

Exposure starts when the time left for read-out equals the exposure time or is
less. If the image acquisition is triggered by software (mode=0), it always
starts as soon as possible. If the image is triggered externally (mode=1), the
user may choose the trigger to be "lossy" (SET_trig_lossy()) or "sticky"
(SET_trig_sticky()). In the first case the trigger will be lost, if it comes too
early, in the latter case, it will be stored until image acquisition is possible.

With this function, complete control and tracking individual images is possible.
The following parameters may be set for individual images:

 exp exposure time in units of EXUNIT msecs

VCRT5 Software Manual of Operation System Functions

© 2010 Vision Components GmbH Ettlingen, Germany VCRT5.pdf

40

 gain gain setting for ADC
 start start address for image storage
 mode internal / external trigger mode (mode=0 : int., mode=1 : ext.)
 binning (mode=8 : binning enabled)

 Exposure time is calculated according to the following formula:

 Exptime[µsec]=(exp +

getvar(XSG)/getvar(TOTAL))*getvar(EXUNIT)

So, exp=0 means a shutter time of approximately 30 msecs for a VC4038.
Shutter times may be quite large, e.g. several seconds. Please note, that with
shutter times above 1 sec individual pixels may feature large amounts of spot
noise, those pixels may even be fully saturated. This is normal and no reason
for return of equipment. Use appropriate filtering to reduce this kind of noise.

 Gain is calculated according to the following formula:

 realgain[dB] = 6 + (32*gain/256) accuracy: +/- 1dB

The amplification of the PGA may then be calculated with the following
formula:

 amplification = 10^(realgain/20)

For large differences in gain from one picture to the next, the ADC may take
some time to track the black level. If this is a problem, you should insert one
picture for adjustment.

Be sure that you have allocated enough memory at address start for the
image to be stored.

Mode=1 means external trigger. If the corresponding image is processed, the
system waits for the external trigger to start ackquisition. The system may wait
indefinitely in this state if no trigger is received. If this state needs to be
cancelled without external trigger, the function cancel_capture_rq() may
be used.

Mode=8 activates factor 2 binning (for cameras featuring binning), i.e. the
vertical number of lines is reduced to half and the sensitivity is doubled.
Binning is a special feature of CCD sensors, where consequtive line pairs are
added on the sensor.

The capture requests are put into a queue of 20 slots. As long as slots are
available, a call of capture_request() returns immediately regardless if
the picture is taken without delay or the request is just stored in the queue.

 If the queue is full, the function will return 0. No request is stored.

When the request is stored, the function returns a non-zero token or tracking
number for this request. This number may be used to poll the system

VCRT5 Software Manual of Operation System Functions

© 2010 Vision Components GmbH Ettlingen, Germany VCRT5.pdf

41

variables EXPOSING, STORING and IMGREADY, where the tracking numbers
of the images requested in the different states are shown.

It is not allowed to call this function in live mode (vmode(0), vmode(2),
vmode(4), vmode(6)). This is not checked !

cancel_capture_rq cancel capture request

synopsis int cancel_capture_rq(void)

description Sometimes it is necessary to abort the currently active capture request queue.

This is e.g. the case, when a capture request has been issued with an
external trigger, but the trigger signal does not come.

cancel_capture_rq() aborts the capture request queue and resets the
capture hardware.

The function first checks if a capture transfer is currently active (i.e. data being
captured from CCD previously is transferred into main memory) If so, the
function returns 1 and does not perform a cancel operation. If not, the cancel
is done immediately and will return 0. Execution time: approx. 1 msec, when
successful.

cancel_capture_rq() does the following:

• stop live mode and set IMODE to 1
• set VSTAT to 0
• reset capture hardware
• clear capture queue
• initialize capture driver

example while(cancel_capture_rq() == 1);

see also capture_request()

VCRT5 Software Manual of Operation System Functions

© 2010 Vision Components GmbH Ettlingen, Germany VCRT5.pdf

42

vmode Set video modes

synopsis void vmode(int mode)

description This function changes the modes for the video controller.

 The settings are made according to the following table:

mode meaning IMODE OVLY_ACTIVE
0 live video + cyclic image acquisition 0 0
1 display of the video memory (stills) 1 0
2 live video + cyclic image acquisition 0 0
3 display of the video memory (stills) 1 0
4 like 0 but including overlay display 0 1
5 like 1 but including overlay display 1 1
6 like 2 but including overlay display 0 1
7 like 3 but including overlay display 1 1

 Other values for mode are not defined.

The setting of the system variables determines the location and format of the
display (mode 1, 3, 5, 7) and how the frame is stored (mode 0, 2, 4, 6).

The function changes the value of the system variables IMODE and
OVLY_ACTIVE (see table). Changes of the video mode come into effect after
the completion of the next frame.

tpict Picture taking function

synopsis void tpict(void)

description This function takes a picture. The function waits in a loop until the entire

picture is in memory. This function was implemented to provide a
"compatibility mode" to the tpict() function of cameras not equipped with
progressive scan sensor.
This function does not, however, completely support the special progressive
scan features. It is therefore recommended to use the functions
capture_request() or tpp(), whenever the special progressive scan
features are needed.

The current setting of the system variables determines the location and format
of the stored picture in memory.

 tpict() changes the video mode. After this function is called, the system

switches to still frame (vmode=1). If overlay is active, the system switches to
still frames with overlay (vmode=5).

 The function changes the value of the system variable IMODE to 1.

!

VCRT5 Software Manual of Operation System Functions

© 2010 Vision Components GmbH Ettlingen, Germany VCRT5.pdf

43

tpp Picture taking function / progressive scan

synopsis int tpp(void)

description This function takes a picture in progressive scan mode. This means, that the

sensor starts with image integration without any delay. The exposure time is
determined by the selected shutter speed which can be controlled with the
shutter() function.
After the image integration, the information is transferred to the DRAM. The
sensor always works in full frame mode, i.e. there are no half images.
The function waits in a loop until the entire picture is in memory. It is not
allowed to call tpp() in all video modes. See the following table for allowed
video modes:

 vmode setting description use of tpp()
vmode(0) live video storage not allowed
vmode(1) still video allowed
vmode(2) live video storage not allowed
vmode(3) still video allowed
vmode(4) vmode(0) + overlay not allowed
vmode(5) vmode(1) + overlay allowed
vmode(6) vmode(2) + overlay not allowed
vmode(7) vmode(3) + overlay allowed

If tpp() is called in a video mode for which it is not allowed, it returns -1 and
no picture is taken. If it is necessary, to take a picture while being in one of the
not allowed video modes, the function tpict() may be used. This, however,
means that the immediate triggering of the progressive scan sensor cannot be
used.

 tpp() does not change the video mode.

 The following example shows the use of tpp() with external trigger.

example
 vmode(1); /* still mode on */
 tpwait(); /* wait for still mode */

 while(inPLC()&0x01) != 0); /* wait for trigger */
 tpp(); /* take picture */

 Using this function does not support parallel processing (exposing while

storing the image). For maximum performance, the function
capture_request() is recommended.

!

VCRT5 Software Manual of Operation System Functions

© 2010 Vision Components GmbH Ettlingen, Germany VCRT5.pdf

44

tpstart Picture taking function / progressive scan

synopsis int tpstart(void)

description This function is quite similar to the function tpp(). The only difference is that it

does not wait for the completion of the image taking process.

 Using this function does not support parallel processing (exposing while

storing the image). For maximum performance, the function
capture_request() is recommended.

tpwait Wait for completion of picture taking function (macro)

synopsis void tpwait(void)

description This function is used to make sure, that an image taking process, started with

tpstart() is completed. If so, the function immediately returns, if not, the
function waits in a loop.

tenable Trigger enable for interrupt driven image acquisition

synopsis int tenable(void)

description this function resembles the tpp() function, except for the fact that the start of

the image integration is triggered by the external trigger input. An image can
only be triggered externally, if tenable() has been called before.
A call of tenable() activates the acquisition of one image only. After the call
of tenable() the function returns to the caller, so processing can be done in
parallel to image acquisition. Of course, it makes no sense to process an
image which might change due to an external trigger, but the processing of a
previously stored image is possible.

For details of the image-taking process, please refer to the documentation of
the tpp() function.

if tenable() is called in a video mode for which it is not allowed, it returns -1
and the picture-taking is not enabled.

 Please do not change the video mode after tenable() has been called and
before the image has been successfully stored in memory.

 Using this function does not support parallel processing (exposing while

storing the image). For maximum performance, the function
capture_request() is recommended.

!

VCRT5 Software Manual of Operation System Functions

© 2010 Vision Components GmbH Ettlingen, Germany VCRT5.pdf

45

trdy Check the status of the picture taking function

synopsis int trdy(void)

description This function is used to check, if an image taking process, started with

tenable() is completed. If so, the function returns 1, if not, the function
returns 0.

example vmode(1); /* still mode on */
 tpwait(); /* wait for still mode */

 tenable(); /* now wait for external trigger */
 while(!trdy()); /* wait for completion */

shutter select shutter speed

synopsis long shutter(long stime)

description This function selects the shutter speed for the CCD sensor.The shutter speed

is specified with the value stime in microseconds.
The shutter speed of the sensor will be set to a possible value close to the one
specified. The function will return the exact shutter speed selected in
microseconds. The possible shutter values range from approx. 90 msec to
several seconds depending on the CCD sensors.

With shutter times above 1 sec individual pixels may feature large amounts of
spot noise, those pixels may even be fully saturated. This is normal and no
reason for return of equipment. Use appropriate filtering to reduce this kind of
noise

!

VCRT5 Software Manual of Operation System Functions

© 2010 Vision Components GmbH Ettlingen, Germany VCRT5.pdf

46

SET_trig_lossy select "lossy" external trigger mode (macro)

synopsis void SET_trig_lossy(void)

description If the external trigger mode for the image acquisition is selected, there is an

error condition if the trigger signal is set during the ackquisition time of the
previous page. In this case the user may choose to lose the trigger information
(SET_trig_lossy()) or store it until image acquisition becomes possible
(SET_trig_sticky()).

SET_trig_sticky select "sticky" external trigger mode (macro)

synopsis void SET_trig_sticky(void)

description If the external trigger mode for the image acquisition is selected, there is an

error condition if the trigger signal is set during the ackquisition time of the
previous image. In this case the user may choose to lose the trigger
information (SET_trig_lossy()) or store it until image acquisition becomes
possible (SET_trig_sticky()).

VCRT5 Software Manual of Operation System Functions

© 2010 Vision Components GmbH Ettlingen, Germany VCRT5.pdf

47

6.11 RS232 (V24) Basic Functions

rs232snd, putchar output a character/serial interface
rs232rcv, getchar read a character/serial interface
sbready send buffer ready/serial interface
rbready receive buffer ready/serial interface
rbempty receive buffer empty/serial interface
setbaud set baudrate for serial interface
kbdrcv read a character/keyboard
kbready receive buffer ready/keyboard

rs232snd, putchar Output a character/serial interface

synopsis void rs232snd(char c)
 void putchar(char c)

description This function outputs one buffered ASCII character via the serial interface

(STDOUT). If the send buffer is not full, the ASCII character is buffered and
program control returns to the calling program. Otherwise, this function waits
until there is room in the buffer, buffers the character and then returns to the
calling program. Waiting for available buffer space does not consume CPU
time.

The buffer is read in the background by an interrupt routine. The character is
transferred via the serial interface as a background process.

 The send buffer can hold a maximum of 256 characters.

The character output is done using the standard serial device driver. This
performs a LF to CR/LF conversion as well as XON/XOFF and hardware
handshake. The behaviour of the device driver can be controlled using the
function io_ioctl()to change the IO-flags of the driver.
The default mode for the serial device driver is LF to CR/LF conversion – no
handshake.

see also rs232rcv(), sbready()

rs232rcv, getchar Read a character/serial interface

synopsis char rs232rcv(void)
 char getchar(void)

description This function reads one buffered ASCII character from the serial interface

(STDIN). A background interrupt routine writes the character to the buffer.
Characters will be lost if the background buffer overflows!

VCRT5 Software Manual of Operation System Functions

© 2010 Vision Components GmbH Ettlingen, Germany VCRT5.pdf

48

The function rs232rcv() first determines if there is a character in the buffer. If
not, it waits until this is the case. The character is then removed from the
buffer and handed over to the calling program as a return value. Waiting for a
character does not consume CPU time.

 The receive buffer can hold a maximum of 256 characters.

The character input is done using the standard serial device driver. This
performs XON/XOFF and hardware handshake. The behaviour of the device
driver can be controlled using the function io_ioctl()to change the IO-flags
of the driver.
The default mode for the serial device driver is no handshake.

see also rs232snd(), rbready()

sbready send buffer ready/serial interface

synopsis int sbready(void)

description This function returns the number of available buffer places for the send buffer

of the serial interface. If the return value is 0, no space is available and a
character output with rs232snd() will wait until space gets available.

see also rs232snd(), sbfull()

rbready receive buffer ready/serial interface

synopsis int rbready(void)

description This function returns the number of characters stored in the receive buffer of

the serial interface. If the return value is 0, no character is available and a
character input with rs232rcv() will "hang" until a character becomes
available.

 buffer space for this function is always 1 character for reasons of compatibility.

see also rs232rcv(), rbempty()

!

VCRT5 Software Manual of Operation System Functions

© 2010 Vision Components GmbH Ettlingen, Germany VCRT5.pdf

49

setbaud set baudrate for serial interface

synopsis void setbaud(long baudrate)

description The function sets the hardware baudrate clock to the specified value.

example setbaud(9600L) /*set baudrate to 9600baud*/

kbdrcv Read a character/keypad

synopsis char kbdrcv(void)

description This function reads one buffered ASCII character from the keypad VCSKB.

A background interrupt routine writes the character to the buffer. Characters
will be lost if the background buffer overflows!

The function kbdrcv() first determines if there is a character in the buffer. If
not, it waits until this is the case. The character is then removed from the
buffer and handed over to the calling program as a return value.
Waiting for a character does not consume CPU time.

 The receive buffer can hold a maximum of 64 characters.

The character input is done using the standard serial device driver. This
performs XON/XOFF and hardware handshake. The behaviour of the device
driver can be controlled using the function io_ioctl()to change the IO-flags
of the driver.
The default mode for the serial device driver is no handshake.

kbready receive buffer ready/keyboard

synopsis int kbready(void)

description This function returns the number of characters stored in the receive buffer of

the serial interface. If the return value is 0, no character is available and a
character input with rs232rcv() will "hang" until a character gets available.

see also kbdrcv(), rbready()

VCRT5 Software Manual of Operation System Functions

© 2010 Vision Components GmbH Ettlingen, Germany VCRT5.pdf

50

6.12 Utility Functions

getvar Read system variable (macro)
setvar Write system variable (macro)
getlvar Read system variable (long, macro)
setlvar Write system variable (long, macro)
getfvar Read system variable (float, macro)
setfvar Write system variable (float, macro)
getstptr Read stack pointer
getdp Read data pointer
getbss Read start of bss

getvar Read system variable

synopsis int getvar(int var)

description The function getvar() reads the value of a system variable. var is usually a

system variable from the file sysvar.h

example #include <sysvar.h>
 int mode;
 mode = getvar(IMODE); /* get video mode */

setvar Write system variable

synopsis void setvar(var, int x)

description The function setvar() changes the value of a system variable. var is

usually a system variable from the file sysvar.h, x is the value to be written.

example #include <sysvar.h>
 setvar(DISP_ACTIVE,0); /* disable video refresh */

getlvar Read system variable (long)

synopsis long getlvar(int var)

description The function getlvar() reads the value of a long system variable (40 bits).

var is usually a system variable from the file sysvar.h

VCRT5 Software Manual of Operation System Functions

© 2010 Vision Components GmbH Ettlingen, Germany VCRT5.pdf

51

setlvar Write system variable (long)

synopsis void setlvar(int var, long x)

description The function setlvar() changes the value of a long system variable (40

bits). var is usually a system variable from the file sysvar.h, x is the value
to be written.

getfvar Read system variable (float)

synopsis float getfvar(int var)

description The function getfvar() reads the value of a float system variable. var is

usually a system variable from the file sysvar.h

setfvar Write system variable (long)

synopsis void setfvar(int var, float x)

description The function setlvar() changes the value of a float system variable. var is

usually a system variable from the file sysvar.h, x is the float value to be
written.

getstptr Read stack pointer

synopsis int getstptr(void)

description The function getstptr() reads the current value of the stack pointer. This

can be useful when debugging programs.

getdp Read data pointer

synopsis int getdp(void)

description The function getdp() reads the current value of the data pointer. This can be

useful when debugging programs.

getbss read start of bss

synopsis int getbss(void)

description The function getbss() reads the start of the bss space to a C program.
 This can be useful when debugging programs.

VCRT5 Software Manual of Operation System Functions

© 2010 Vision Components GmbH Ettlingen, Germany VCRT5.pdf

52

6.13 Lookup Table Functions for Video Display and Overlay

set_overlay_bit assign a color to an overlay bitplane
set_translucent assign a color to a translucent overlay table
set_ovlmask set overlay mask register
init_LUT init image data LUT to black-and-white display
init_LUT_gamma Initialize output LUT using gamma-correction
init_color_lut Initialize input LUT for color camera

set_overlay_bit assign a color to an overlay bitplane

synopsis int set_overlay_bit(int bit, int r, int g, int b)

description This function programs the overlay lookuptable. A color given by (r,g,b) can be

assigned to the bitplane given by bit.

 r,g,b ∈ [0,255]
 bit ∈ [2,7]

6 overlay bit planes (bit=2 .. bit=7) are available for overlay graphics. bit=0
and bit=1 are reserved for translucent overlay graphics.
Higher bitnumbers have priority over lower ones, i.e. whenever a bit is set in n
overlay byte, lower number bits of this bytes are "don't care". This rule also
applies to the translucent bits 0 and 1, i.e. whenever at least one of the bits
2..7 is set, the overlay pixel is no longer translucent.

 The function returns -1 if bit is out of range, else 0.

example image a = {0L, 16, 16, 768};
 a.st = (long)getvar(OVLY_START);

 markerd(&a,8); /* draw marker */
 set_overlay_bit(3,0,255,0); /* green */

VCRT5 Software Manual of Operation System Functions

© 2010 Vision Components GmbH Ettlingen, Germany VCRT5.pdf

53

set_translucent assign a color to a translucent overlay table

synopsis void set_translucent(int table, int r, int g, int b)

description This function programs the overlay lookuptable. A color given by (r,g,b) can be

assigned to the translucent table given by table .

 r,g,b ∈ [0,255]
 table ∈ [1,3]

3 translucent tables (table=1 .. table=3) are available. The function programs
the overlay lookuptable such that it multiplies the upper 6 bits of image data
with the color value given by (r,g,b) (The value is then scaled down to 8 bits).
The image modifed with this kind of translucent table will look as if it was
viewed through a piece of colored glass.

bits 0 and 1 in overlay memory are used to indicate if a given pixel should be
modified with on of the 3 translucent tables:

byte value function
0 no translucent display
1 table no. 1
2 table no. 2
3 table no. 3
> 3 non translucent overlay has priority over translucent table

 The function returns -1 if table is out of range, else 0.

example image a = {0L, 16, 16, 768};

 a.st = (long)getvar(OVLY_START);
 set(&a,1); /* set to 1 */

 set_translucent(1,0,255,255); /* cyan transl. */

VCRT5 Software Manual of Operation System Functions

© 2010 Vision Components GmbH Ettlingen, Germany VCRT5.pdf

54

set_ovlmask set overlay mask register

synopsis void set_ovlmask(int mask)

description This function programs the overlay mask register. A value of mask=255

(0xff) enables all 8 overlay bitplanes. A value of mask=0 disables all
overlay bitplanes. Since in this case the overlay is completely inactive, the
function disables also the transfer of video data into the refresh memory by
writing a 0 to the system variable OVLY_ACTIVE.
Writing a value ≠ 0 to the mask registers with this function will activate the
transfer by writing a 1 to OVLY_ACTIVE.
The value of mask is written to the system variable OVL_MASK.

The function set_ovlmask() changes the system variables OVL_MASK and
OVLY_ACTIVE.

init_LUT init image data LUT to black-and-white display

synopsis void init_LUT(void)

description This function programs the image data lookuptable for black-and-white display.

init_LUT_gamma init image output LUT using gamma correction

synopsis void init_LUT_gamma(float gamma)

description This function programs the image output lookuptable (output LUT) for black-

and-white / color display using gamma correction.

 Gamma correction is a non-linear function used in order to
 compensate for display monitor non-linearities.

 The following formula is applied:

 X’ = X ^ gamma , where X may be any of R,G,B

 Higher values for gamma tend to increase contrast while at the

same time low grey values (dark areas) may not be distinguishable.
Lower values decrease contrast and dark areas may be better differentiated.

The standard value for gamma is 0.45 (according to various video standards).
We recommend a value of 0.6 .
Of course, the best value depends on the chosen monitor and its
settings (like brightness and contrast) and may be found using some
experimentation.

see also init_LUT()

!

VCRT5 Software Manual of Operation System Functions

© 2010 Vision Components GmbH Ettlingen, Germany VCRT5.pdf

55

init_color_lut initialize color input LUT

synopsis void init_color_lut(I32 red, I32 green, I32 blue)

description This function programs the hardware input color lookup-table to a linear
mapping between input and output.
The mappings for the red, green and blue channels can be programmed to a
different slope, which is a useful feature for adjusting the whitebalance of the
camera.

Slope values for red, green and blue can be used to amplify each channel
(value > 1024) or attenuate the channel (value < 1024). A value of 1024 will
result in an identity transform.

9 bits are used for the input of the LUT, 8 bits for the output, so there is
enough head-room for some amplification.

For the whitebalance adjustment, we recommend to leave the channel with
the maximum intensity at the identity transform, the other two channels should
be amplified by appropriate factors.

The possible range for red, greeen and blue is [0.. 32768] equivalent to
amplification factors between 0 and 32.

side effects The function changes the values of the system variables RED, GREEN and

BLUE.

memory none

see also WhiteBalanceValues(), init_color_table()

VCRT5 Software Manual of Operation System Functions

© 2010 Vision Components GmbH Ettlingen, Germany VCRT5.pdf

56

6.14 Time Related Functions

c_time convert system time -> extract time
c_date convert system time -> extract date
c_timedate convert system time -> extract date
ltime convert system time -> extract local time (macro)
ldate convert system time -> extract local date (macro)
ltimedate convert system time -> extract local date and time (macro)
gtime convert system time -> extract GMT time (macro)
gdate convert system time -> extract GMT date (macro)
gtimedate convert system time -> extract GMT date and time (macro)
x_timedate calculate system time
xtimedate calculate system time and store in system variable SEC (macro)
RTC_set_time set real-time clock

VC/RT supports a real-time clock with battery backup. On power-up, clock data is loaded into the
system variable SEC which represents the number of seconds since 12:00 AM January 1, 1900. The
variable SEC and the millisecond counter MSEC are updated by the system when it is running. Time
is always stored internally using Greenwich Meantime (GMT). For calculation of local time two system
variables (TIMEZONE, DAYLIGHT) are used. So, the first thing to do with a new camera would always
be to program the correct timezone and daylight saving time flag. Then check the system time using
the time command of the shell. The following functions may be used to convert system time to broken-
down time or vice versa. Since the system clock is an interrupt driven process, care should be taken to
assure that read-out of the time system variable (system variables) is performed only once for a given
set of time variables. Because the time related system variables may change between two accesses,
corrupted data may be produced otherwise.

c_time convert system time -> extract time

synopsis void c_time(long zsec, int tz, int *sec, int

*min, int *hour)

description The function c_time() converts system time passed to the

function with the variable zsec into seconds (*sec), minutes
(*min), and hours (*hour). The function outputs Greenwich
Meantime (GMT) for tz=0 or any other local time for the
given timezone (tz).

see also c_date(), c_timedate()

c_date convert system time -> extract date

synopsis void c_date(long zsec, int tz, int *day, int

*month, int *year)

description The function c_date() converts system time passed to the

function with the variable zsec into day (*day), month
(*month), and year (*year). The function outputs Greenwich

VCRT5 Software Manual of Operation System Functions

© 2010 Vision Components GmbH Ettlingen, Germany VCRT5.pdf

57

Meantime (GMT) for tz=0 or any other local time for the
given timezone (tz).

see also c_time(), c_timedate()

c_timedate convert system time -> extract date

synopsis void c_timedate(long zsec, int tz, int *sec,

int *min, int *hour, int *day, int *month,
int *year)

description The function c_timedate() converts system time passed to

the function with the variable zsec into seconds (*sec),
minutes (*min), hours (*hour), day (*day), month (*month),
and year (*year). The function outputs Greenwich Meantime
(GMT) for tz=0 or any other local time for the given timezone
(tz).

see also c_time(), c_date()

ltime convert system time -> extract local time (macro)

synopsis void ltime(int *sec, int *min, int *hour)

description The macro ltime() converts system time stored in system

variable SEC into seconds (*sec), minutes (*min), and hours
(*hour). The function outputs local time with respect to
system variables TIMEZONE and DAYLIGHT.

see also ldate(), gdate()

ldate convert system time -> extract local date (macro)

synopsis void ldate(int *day, int *month, int *year)

description The macro ldate() converts system time stored in system

variable SEC into day (*day), month (*month), and year
(*year). The function outputs local time with respect to
system variables TIMEZONE and DAYLIGHT.

see also ltime(), gtime()

ltimedate convert system time -> extract local date and time

(macro)

VCRT5 Software Manual of Operation System Functions

© 2010 Vision Components GmbH Ettlingen, Germany VCRT5.pdf

58

synopsis void ltimedate(int *sec, int *min, int
*hour, int *day, int *month, int *year)

description The macro ltimedate() converts system time stored in

system variable SEC into seconds (*sec), minutes (*min),
hours (*hour), day (*day), month (*month) and year (*year).
The function outputs local time with respect to system
variables TIMEZONE and DAYLIGHT.

note: Be sure to use this function whenever you need a complete

set of time and date variables. Using the functions ltime()
and ldate() separately might give you an inconsistent set of
variables if time changes from 23:59:59 to 00:00:00 of the
next day when you call the functions.

see also ltime(), ldate(), gtimedate()

gtime convert system time -> extract GMT time (macro)

synopsis void gtime(int *sec, int *min, int *hour)

description The macro gtime() converts system time stored in system

variable SEC into seconds (*sec), minutes (*min), and hours
(*hour). The function outputs GMT time.

see also gdate(), ltime()

gdate convert system time -> extract GMT date (macro)

synopsis void gdate (int *day, int *month, int *year)

description The macro gdate() converts system time stored in system

variable SEC into day (*day), month (*month), and year
(*year). The function outputs GMT time.

see also ltime(), gtime()

gtimedate convert system time -> extract GMT date and time

(macro)

synopsis void gtimedate(int *sec, int *min, int

*hour, int *day, int *month, int *year)

description The macro gtimedate() converts system time stored in

system variable SEC into seconds (*sec), minutes (*min),
hours (*hour), day (*day), month (*month) and year (*year).
The function outputs GMT time.

VCRT5 Software Manual of Operation System Functions

© 2010 Vision Components GmbH Ettlingen, Germany VCRT5.pdf

59

note: Be sure to use this function whenever you need a complete

set of time and date variables. Using the functions gtime()
and gdate() separately might give you an inconsistent set of
variables if time changes from 23:59:59 to 00:00:00 of the
next day when you call the functions.

see also gtime(), gdate(), ltimedate()

x_timedate calculate system time

synopsis unsigned long x_timedate(int tz, int sec,

int min, int hour, int day, int month, int
year)

description The function x_timedate() converts time and date

information into system time which it outputs as return value.

 The following parameters are passed to the functions:

tz timezone example: 1
sec second example: 0
min minute example: 59
hour hour example: 14
day day example: 31
month month example: 12
year year example: 2001

 system time is the number of seconds since 12:00 AM

January 1, 1900

see also xtimedate()

xtimedate calculate system time and store in system variable SEC

(macro)

synopsis void xtimedate(int sec, int min, int hour,

int day, int month, int year)

description The macro xtimedate() converts time and date information

into system time which it stores in the (long) system variable
SEC.

 System time is calculated with respect to system variables

TIMEZONE and DAYLIGHT.

parameters The following parameters are passed to the functions:

VCRT5 Software Manual of Operation System Functions

© 2010 Vision Components GmbH Ettlingen, Germany VCRT5.pdf

60

sec second example: 0
min minute example: 59
hour hour example: 14
day day example: 31
month month example: 12
year year example: 2001

system time is the number of seconds since 12:00 AM January 1, 1900

see also x_timedate()

RTC_set_time set Real Time Clock

synopsis void RTC_set_time()

description Programs Real Time Clock Chip according to Systems

variables set by xtimedate

example : time command of the shell

 time_sopt()
 {
 int sec,minute,hour,day,month,year;
 display_timezone();
 ltimedate(&sec,&minute,&hour,&day,&month,&year);
 print("time: %02d:%02d:%02d\n",hour,minute,sec);
 print("date: %02d/%02d/%02d\n",month,day,year-2000);
 enter_timezone();
 enter_date(&day,&month,&year);
 enter_time(&hour,&minute,&sec);
 xtimedate(sec,minute,hour,day,month,year+2000); //set

internal clock
 setvar(LOWBAT,0); /* reset internal lowbat */
 RTC_set_time(); /* program clock chip */
 }

see also xtimedate()

VCRT5 Software Manual of Operation System Functions

© 2010 Vision Components GmbH Ettlingen, Germany VCRT5.pdf

61

TIMER2 Macros

For the VC40xx and VC44xx Smart Cameras, there is a user programmable interrupt timer available,
TIMER2. TIMER2 may be programmed using macros. The zero-interrupt is available as an event.

The following macros are available:

TIMER2_RESET() resets TIMER2 to its default state
TIMER2_INIT(T2CTRL,nclk,0) initializes TIMER2 to nclk = number of clocks
TIMER2_START() starts TIMER2
TIMER2_STOP() stops TIMER2

Whenever TIMER2 counts down to zero, an event (TIMER2) is generated. See the chapter about
events for further information.

VCRT5 Software Manual of Operation System Functions

© 2010 Vision Components GmbH Ettlingen, Germany VCRT5.pdf

62

7 Prototypes, Include Files

The file <vcrt.h> contains the corresponding prototypes for all functions described in this
documentation.

It is especially important to add this include file to your user program if you call functions with variable
argument lists (print(), exec()).

This is usually done by adding the command

 #include <vcrt.h>

to the beginning of the C program file.

The file <register.h> contains hardware dependent declarations, the file <sysvar.h> the
declaration of the system variables. (See discussion of the system variables in Appendix E).

You may also wish to include the header file <vlib.h> which is part of the VCLIB image processing
library package not covered here.

8 Memory Model of VC20xx / VC40xx / VC44xx Cameras

In contrast to the ADSP2181 signal processor, the TMS320C62xx used in the VC20xx cameras and
the TMS320C64xx used in the VC40xx and VC44xx cameras has only one unified memory space.
There are 16, 32, 64 and 128 MByte versions available for the SDRAM memory.

The SDRAM memory used is organized in 4 pages of equal size. The DSP is able to keep all 4 pages
open at the same time. If used properly this feature me be used to speed up programs.

The following table summarizes some information about the memory:

memory size 16 MBytes 32 MBytes 64 Mbytes 128 MBytes
start address 0xA0000000 0xA0000000 0xA0000000 0xA0000000
end address 0xA0FFFFFF 0xA1FFFFFF 0xA3FFFFFF 0xA7FFFFFF
size (hex) 0x01000000 0x02000000 0x04000000 0x08000000

VCRT5 Software Manual of Operation System Functions

© 2010 Vision Components GmbH Ettlingen, Germany VCRT5.pdf

63

9 Functional Principle of the VC20xx / VC40xx / VC44xx
Smart Cameras

Figure 1 illustrates how the cameras work. The differences between the various camera types have to
do with the CCD sensors used and the frame output, for which different extension boards are used.

The left side of the figure shows the sensor board, with the CCD sensor, the controller and processing
of the video signal.

The controller is used to read-out the CCD sensor, like for common cameras. The controller's modes
can all be set by software.

The output of the CCD sensor is an analog signal, which is passed to a programmable gain amplifier
(PGA, software programmable) and then to the A/D converter. The A/D conversion used is called
"pixel-identical", because there is a separate gray value for each pixel of the CCD sensor.

The video data may be modified using an input LUT. The image information is then stored in the
DSP's main SDRAM memory using DMA.

The image may then be displayed on the monitor in real time or as a stored image. Therefore, part of
the main memory is copied to the "Graphic Memory" via DMA. This data transfer is usually active
continously guaranteeing that the monitor will always display up-to-date information. The image
displayed on the screen first passes a color LUT and is then displayed as 24bit RGB graphics. It may
be combined with overlay data which is also displayed in 24bit color using a second LUT.
For VC40xx and VC44xx Smart Cameras the video display is done directly from the main SDRAM
memory; no "Graphic Memory" is needed.

For external control of the image acquisition process a fast trigger input is provided. A trigger output
may be used to trigger a strobe light. Both functions are fully implemented in hardware.

Taking and reproducing pictures is almost 100% supported by hardware. This means, it does not
require computing time. It does, however, consume memory bandwith. It is quite difficult to tell if this
will slow down processing and how much. To be on the safe side, it is recommended to avoid these
functions wherever it is possible. (e.g. displaying a stored image is better than a live display). As a
ballpark number, the image ackquisition may delay program execution by perhaps 1%.

VCRT5 Software Manual of Operation System Functions

© 2010 Vision Components GmbH Ettlingen, Germany VCRT5.pdf

64

9.1 Block Diagram of VC20xx Cameras

VCRT5 Software Manual of Operation System Functions

© 2010 Vision Components GmbH Ettlingen, Germany VCRT5.pdf

65

Blockdiagram VC44xx

Blockdiagram VC4018 / VC4016

VCRT5 Software Manual of Operation System Functions

© 2010 Vision Components GmbH Ettlingen, Germany VCRT5.pdf

66

10 Organization of the DRAM

The VC20xx / VC40xx / VC44xx series cameras are equipped with SDRAM (synchronous dynamic
RAM) for storage of large amounts of data. The size of this SDRAM memory ranges from 16 MBytes
for the VC20xx cameras to more than 128 MBytes for the VC44xx cameras. VC20xx and VC40xx
cameras have a 32Bit wide organization of the memory, VC44xx cameras have 64Bit organization.
The SDRAM is used for main memory, program, data and video data (images). It is volatile, meaning
the data is lost when the supply voltage is switched off. Smart cameras of type VC4016/18 do not
have a video output.

Organization of the video memory:

 Note, that the mapping of pixels to bytes has changed with respect to prior versions
 with ADSP2181 DSP. (VC20xx / VC40xx / VC44xx cameras use litlle endian byte
 mapping).

The video memory can be any part of the SDRAM. The size of this memory area depends on the
frame format and the number of required frames. A start address can be specified individually for the
SDRAM position of the picture taken or shown on the screen (system variables CAPT_START). or
DISP_START). This makes it possible to display several video memory screens, for example, or to
take several pictures in rapid sequence. They can then be processed, etc.
The system automatically allocates memory for one image (size = (DHWIDTH, DVWIDTH)) and
sets CAPT_START and DISP_START to the same address, so that all the ackquired images will be
displayed automatically.

Based on the start address, the picture is written to the subsequent memory area or read from it. The
first pixel (for addr=startad) is located in the upper left corner of the picture. The next pixel is directly to
its right in the same line, etc. This way, an entire line is stored in a continuous memory area.

To get to the beginning of the next line, the value "pitch" must be added to the beginning of the
previous line (in this case, startad). The correct value for pitch depends on how the picture format was
programmed, thus on the camera type.

Picture

address difference
of vertically
adjacent
pixels = PITCH

The picture format used may results in some unused memory. For example, if the pitch were 1024 and
the number of pixels per line 744, this results in 1024-744=280 bytes (about 30%) which are wasted
per line. The memory space could be utilized better either by reducing the number of pixels per line
(e.g. cols=512, pitch=512) or by copying the picture to a compact memory area.

!

VCRT5 Software Manual of Operation System Functions

© 2010 Vision Components GmbH Ettlingen, Germany VCRT5.pdf

67

 active area of the unused
 video memory area

 744 columns 1024-744=280
 574 lines columns

11 Organization of the Overlay DRAM

Just like the video memory, the overlay memory can be any part of the SDRAM. You must of course
make sure that the overlay memory does not overlap video memory or data memory areas. A start
address can be specified for the overlay. The system variable OVLY_START in the header file sysvar.h
is used for this.

The organisation of the overlay SDRAM is the same as for the video data SDRAM. Like the latter, 8
bits per pixel are used. If the pixel's value is zero, the overlay is inactive and video data will be
displayed. If the pixel's value is nonzero, overlay information will be displayed depending on the state
of the overlay mask register.

With the exception of camera models without video output (e.g. VC4018 / VC4016), the VC20xx /
VC40xx / VC44xx cameras feature powerful image graphics and overlay display features.

- 8 bit image graphics plus independent 8 bit overlay
- 2 lookup tables 256x24 (RGB) for image and overlay
- 2x3 lookup tables for color cameras
- 8 bit overlay mask for individual control of overlay bits
- 6 regular overlay planes + 3 translucent overlay planes

The following drawing gives an overview of the functionality:

Overlay
LUT
256x24

Image
LUT
256x24

24

24

 &

Overlay Mask

l t

O[7:2]=0 ?

yes: select

86

2O[1:0]

O[7:2] 6
8 8

6

D[7:2]

D[7:0]88

Overlay

D[7:0]
Image

O[7:0]=0 ?

yes: select

RGB OUTPUT

24

VCRT5 Software Manual of Operation System Functions

© 2010 Vision Components GmbH Ettlingen, Germany VCRT5.pdf

68

It is important to know that there is a memory for image data starting at address DISP_START in maín
memory. This data is normally displayed using the "Image LUT" . Besides that the user may use an
overlay memory with the same size (and organized with 8 bits per pixel) starting at address
OVLY_START in main memory. Depending on the bits set in overlay memory and the value of the
overlay mask the pixel will be displayed either as overlay using the "Overlay LUT" , as image using the
"Image LUT" or as a combination of both (6 bits from the image and 2 bits from overlay) using one of
the three translucent tables in the "Overlay LUT".

With the pixel mask register it is possible to select and deselect individual overlay planes very rapidly.
Setting the register to zero disables the overlay display.

The following table summarizes the functionality of the image data and overlay display:

O[7..0] = 0 no overlay, display of image data through image data LUT
O[7..2] ≠ 0 normal overlay, display of overlay data through overlay LUT
O[7..2] = 0, O[1..0] ≠ 0 3 translucent tables, display of image data through overlay LUT

VCRT5 Software Manual of Operation System Functions

© 2010 Vision Components GmbH Ettlingen, Germany VCRT5.pdf

69

12 Description of the File Structure

Start address of the file system is at address 0x080000 (sector 8). User files can be stored starting at
address 0x100000 (sector 16). The files are stored one after another, without gaps.

Here's the overview about the different file types :

Executable File
ASCII File
Binary Data File
JPEG Data File
RLC Data File

FLASH EPROM FILE STRUCTURE

Description Offset No. of bytes Comment
Header: 0 2 bytes ABCD
File type 2 1 byte See table below
File name 3 9 bytes in ASCII code with \0 as end,

i.e. a maximum of 8 characters plus \0
Number of modules 12 2 bytes Always 0001 = 1 module
Dummy 14 2 bytes reserved for later use
Module type 16 1 byte 00
Length 17 4 bytes length
Data 21 n bytes n=length
Check sum 1 byte currently 0x55

File types

File type File extension Hex code
Executable file exe, out 0x00

ASCII asc, txt, htm 0x01

BINARY dat 0x02

JPEG jpg 0x03

RLC rlc 0x04

compressed executable cex 0x80

compressed ASCII cas 0x81

compressed BINARY cda 0x82

compressed JPEG cjp 0x83

compressed RLC crl 0x84

The internal data structure for executable files complies to the standard .COFF format.

VCRT5 Software Manual of Operation System Functions

© 2010 Vision Components GmbH Ettlingen, Germany VCRT5.pdf

70

13 System Variables

VC/RT allows access to a series of system variables. Their addresses are defined in a header file
called sysvar.h. Please always use the names in this header file as a reference. Do not use
absolute addresses, as they may be changed while the development of the cameras continues.
System variables may be accessed using the functions getvar() , setvar() , getlvar() and
setlvar().

The following is a list of the most important system variables:

Variable mode description
DISP_PERIOD r/w refresh rate for display & overlay
DISP_CNT r/w counter for refresh rate (counts down)
DISP_START r/w start address for display (must be multiple of 1024)
OVLY_START r/w start address for overlay (must be multiple of 1024)
DISP_ACTIVE r/w 0: no refresh / 1: refresh (display)
OVLY_ACTIVE r/w 0: no refresh / 1: refresh (overlay)
CAPT_START r/w start address for image capture (must be multiple of

1024)
HWIDTH r/o sensor active horizontal pixels
VWIDTH r/o number of active vertical sensor lines
VPITCH r/o video pitch
EXPCNT r/w number of exposure cycles (lines)
GAIN r/w video gain value
IMODE r/w 1.) video mode, 0=life refresh, 1=stop after current image
VSTAT r/w 1.) video status 0=idle 1=capture busy

CPUCLK r/o master cpu clock frequency

MSEC r/w 2.) real-time clock: millisecond
SEC r/w 2.) real-time clock: seconds since 1900 (long value)
EXUNIT r/w time unit for exposure control [usec]
TIMESTAMP r/o timestamp for last captured images [ms]
DAYLIGHT r/w daylight saving time flag
TIMEZONE r/w real-time clock: timezone
LOWBAT r/o low battery voltage: 1=time invalid 0=time ok
TEMP r/o cpu board temperature
VERSION r/o VCRT software version
DRAMSIZE r/o size of main SDRAM
PLCOUT r/w state of the PLC outputs
PLCIN r/o state of the PLC inputs
POWFAIL r/o 1: PLC power failure / 0: power ok
EXPOSING r/o tracking number of the image being exposed
STORING r/o tracking number of the image being stored
IMGREADY r/o tracking number of the last image being ready for

processing
LATENCY r/w maximum interrupt latency (testversions only)
MMC r/o missing multi-media / sd card: -1
IPADDR r/o IP address (ethernet version)
IPMASK r/o IP mask (ethernet version)
IPGATE r/o IP gateway (ethernet version)
DHCP r/o dhcp 1=on 0=off -1=failure
TPRIORITY r/w exec2() task priority default=9
FPGAVERSION r/o fpga version / date
OVC_STAT r/o overcurrent status (DM640 only)

SCRLOGPAGE r/w needed for macros.h

VCRT5 Software Manual of Operation System Functions

© 2010 Vision Components GmbH Ettlingen, Germany VCRT5.pdf

71

OVLLOGPAGE r/w needed for macros.h
MODEL r/o camera model
DHWIDTH r/o display horizontal width
DVWIDTH r/o display vertical width
OVL_MASK r/w overlay mask default value
PRIVATE r/o index for private sysvars
TELNET r/o telnet active

TOTAL r/o total number of clocks in line
XSG r/o clock cycles between XSUB & XSG
USR_EVENT r/o first user event number
USR_EVT_LAST r/o last user event number
RED r/w 3.) whitebalance RED value
GREEN r/w 3.) whitebalance GREEN value
BLUE r/w 3.) whitebalance BLUE value
GAMMA r/w 3.) gamma for output LUT
RGBO_START r/w start of RGBO buffer / color camera
COLOR_MODE r/w 3.) mode for color display
UPTIME r/w 2.) system uptime in seconds
SYSMEM r/o system mem struct
TESTVERSION r/o testversion 0 = release
ETHLINK r/o ethernet link info (1 = link active, 0 = no link)
LTEST interrupt latency test
EMAC_COUNT emac_count
TIME_SLICE r/w time_slice
SENSORID r/o sensor id of camera head
PRIVATESYS storage for 50 private sysvars

r/w = read / write
r/o = read / only (it is not allowed to write to this system variable)
1.) changed by image capture process
2.) changed by timer tick
3.) changed by shell command

Please note, that most of the system variables are highly hardware dependent, e.g. the variables
HWIDTH and VWIDTH reflect the size of the active sensor area in horizontal and vertical direction.

In the following some of the system variables are explained in detail:

DISP_PERIOD is the refresh rate for display & overlay in units of display cycles. It is only applicable to
model VC20xx cameras. (Model VC40xx refresh the display directly from main memory)
DISP_PERIOD is always 1 regardless of the value written into this register). E.g. with a display refresh
rate of 70 Hz, one display cycle would be 14 milliseconds. A value of 4 (default) for DISP_PERIOD
means that the video refresh memory would be updated from main memory each 4*14 = 56
milliseconds.

DISP_CNT is a counter counting down from the value written to DISP_PERIOD to 1. Whenever it
reaches 0, it is automatically reloaded to DISP_PERIOD and the video refresh takes place.

DISP_START, OVLY_START, CAPT_START store the address of the memory buffers for display,
overlay and capture. The system stores default values for allocated memory on system start. The

VCRT5 Software Manual of Operation System Functions

© 2010 Vision Components GmbH Ettlingen, Germany VCRT5.pdf

72

default capture and display address are equal, i.e. whenever an image is captured, it will be displayed
on the video monitor. Since smart cameras like the VC4018 and VC4016 do not provide display
overlay, OVLY_START is zero for those cameras. If the user needs the overlay memory for
compatibility reasons, it is possible to allocate the proper overlay space and write the start address to
OVLY_START.

DISP_ACTIVE and OVLY_ACTIVE allow enabelling and disabelling the refresh of the display and
overlay buffers separately. This feature is available for VC20xx smart cameras only.

HWIDTH and VWIDTH are the horizontal and vertical size of the sensor in pixels.
DHWIDTH and DVWIDTH are the horizontal and vertical size of the display in pixels. For some camera
models the display size is larger than the sensor size, for others both sizes are equal. For smart
cameras without video output, e.g. the models VC4018 and VC4016 the values of DHWIDTH and
DVWIDTH are zero !

VPITCH is the video pitch, i.e. the address difference of two vertical neighbor pixels. There is only one
video pitch, i.e. the pitch for capture and display is the same.

IMODE and VSTAT are set and used by the image capture routines like tpict() and vmode().
IMODE=0 indicates a live mode image refresh, i.e. the system captures images at the fastest rate
possible. VSTAT=1 signals that a capture is currently active. It should be noted, that the function
capture_request() does not use these variables, they are used by the functions tpict(),
tenable(), tpstart(), tpwait(), trdy() and tpp() only.

MSEC and SEC: like other system variables these values can change on the fly. So please make sure
that the values for MSEC and SEC are consistent, when reading both.

TIMESTAMP is a pointer to a struct where timestamp information for a series of images is stored. See
the chapter about image capture timestamp operation for further information.

TEMP is the CPU board temperature. The value stored in this variable is twice the temperature in
degrees Celsius, i.e. it has a resolution of 0.5 degrees.

POWFAIL is available for all cameras with separate PLC power supply, namely the VC20xx and the
VC40xx cameras excluding the VC4018 and the VC4016.

EXPOSING, STORING and IMGREADY reflect the status of the image capture queue. The tracking
number of each image (which is the return value of the function capture_request()) is
automatically written to these variables according to its state.

IPADDR, IPMASK, IPGATE are 32bit (Hex) values for IP address, mask and gateway. They are
applicable for Ethernet cameras only and cannot be changed by the user. Changing the IP address
requires changing the system file #IP.txt on the device fd: and performing a power-up sequence.

TPRIORITY and TIME_SLICE are used when calling the function exec2() for starting a parallel
process. Higher values indicate a lower priority for TPRIORITY. For processes with equal priority it is
possible to work with timeslices. Simply write the timeslice value in milliseconds to the system variable
TIME_SLICE.

OVC_STAT is used for VC4018 and VC4016 smart cameras. If its value is zero, the PLC outputs work
normally. When there is an overcurrent situation (i.e. the current flowing through all PLC output

VCRT5 Software Manual of Operation System Functions

© 2010 Vision Components GmbH Ettlingen, Germany VCRT5.pdf

73

terminals exceeds a threshold like 1 or 2 amps), all the PLC outputs are switched off, OVC_STAT is set
to a system dependend start value, which counts down. When this value reaches zero, the system
switches the outputs to their former state in order to test the overcurrent condition and to return to
normal operation when the short-circuit has disappeared.

SCRLOGPAGE and OVLLOGPAGE: it is possible to use physical and logical pages for image and overlay
display.

OVL_MASK is a copy of the hardware overlay mask used for overlay video display. It is set and
updated by the function set_ovlmask().

PRIVATE: the value of this system variable indicates at which system variable number an array of 50
user defined system variables begin.

TELNET: this system variable is 1 when a telnet connection is open, otherwise its 0.

The value of USR_EVENT indicates the first event number available to the user as a user event.
USR_EVENT_LAST is the last available user event number.

RED, GREEN, BLUE are the whitebalance values for color cameras with hardware whitebalance
support. The function WhiteBalanceValues() is used to calculate the values for the red, green and
blue channels. A value of 1024 for a channel means, that the channel is used one-to-one, i.e. without
any change. A value larger than 1024 corresponds to an amplification of that channel, e.g. 2048 would
be an amplification by a factor of 2. There is always at least one channel with a value of 1024. The
function init_color_lut() is used to program the hardware lookup-table for the three channels.
This function also sets the values for the system variables RED, GREEN and BLUE for further reference.
A whitebalance can also be done using the shell command wb.

GAMMA is used to compensate display monitor non-linearities. The value of the system variable GAMMA
is divided by 100 and used as an argument for the function init_LUT_gamma(). This function then
programs the output lookup-tables in the appropriate way. See the documentation of the function
init_LUT_gamma() for further information. The lookup-table and the value of GAMMA can be
changed using the shell function disp –g.

COLOR_MODE is applicable only for color cameras with video output. It is used to specify the video
output mode according to the following table:

0 IDLE no display, maximum CPU performance
1 GREY display of a black-and-white (grey) image
2 RGB display of an image in RGB format
3 BAYER display of an image in Bayer-pattern format in full color
4 BAYERGREY display of an image in Bayer-pattern format as black-and-white image
5 YCBCR display of an image in YCbCr format

Changing the system variable COLOR_MODE instantly changes the mode of the display. This can also
be done using the shell command disp –c.

UPTIME is the time in seconds since the start of the system (hardware boot or software re-boot).

ETHLINK is the Ethernet link information. A value of 1 means that the system has detected an
Ethernet PHY on the remote computer site and a link is present. Otherwise the value is 0.

VCRT5 Software Manual of Operation System Functions

© 2010 Vision Components GmbH Ettlingen, Germany VCRT5.pdf

74

 Example: How to use Systems Variables

 #include <sysvar.h>

 void set_display_start(int addr)
 {
 setvar(DISP_START, addr); /* Use of system variable

DISP_START */
 }

VCRT5 Software Manual of Operation System Functions

© 2010 Vision Components GmbH Ettlingen, Germany VCRT5.pdf

75

14 Image Capture Timestamps

Whenever an image is captured, a timestamp for this image is stored in a table together with its
tracking number for further reference. The system variable TIMESTAMP provides the pointer to this
table. The number of elements in this table is given by IMGTS_SIZE which is currently set to 20.

The table has the following format:

typedef struct
{
 long long exptimestamp; /* time stamp of image */
 int imageno; /* image number */
} imgts;

The timestamp value is calculated according to the following formula:

exptimestamp = 1000 * getvar(SEC) + getvar(MSEC)

The following progam may help to understand the timestamp feature:

print("exposure timestamps : 0x%08lx\n",getvar(TIMESTAMP));
 {
 int i;
 imgts * ts_table = (imgts *)getvar(TIMESTAMP);

 for(i=1;i<=IMGTS_SIZE && ts_table;i++,ts_table++)
 {
 print("%02d (0x%x) ",i,ts_table);
 print("nr= %d ",ts_table->imageno);
 print("ts= %lu\n",ts_table->exptimestamp);
 }
 }

VCRT5 Software Manual of Operation System Functions

© 2010 Vision Components GmbH Ettlingen, Germany VCRT5.pdf

76

15 Useful Files

The following batch files (.BAT files) are useful for working with the development system. After VC/RT
is installed, these files are located in the corresponding VC/RT directories.

15.1 c.bat

cl6x -o3 –mi100000 -ml3 –pl %1.c

This batch file is used to compile a program without calling the linker.

It is usually used for large projects. Each C source file can be compiled individually and then linked
with another batch file.

Call:

c pgm1

This call compiles the program pgm1.c and creates the object file pgm1.obj.

The option

-o3

compiles for the best optimization possible.

-mi100000

specifies a threshold of 100000 cycles for blocking the system interrupts. Without this option the
compiler may block the system interrupts for an extended period of time which may result in serious
system failures

-ml3

compiles for the "large" memory model. Without this option, the program is further optimized.

15.2 cc.bat

cl6x -o3 –mi100000 -ml3 -pl %1.c
lnk6x –s -u _c_int01 %1.obj -m %1.map -o %1.out cc.cmd
strip6x %1.out

copy %1.out exec.out
\adsp\21xx\util\econv %1
\adsp\21xx\util\scvt
copy adsp.msf %1.msf

This batch file compiles and links a program, and converts it to S Records. The .msf file thus created
is then copied to the current directory. The .msf may then be downloaded to the camera using the lo-
command. Alternatively, the .out file could be transferred to the camera via FTP.

This batch file compiles only a single C source file. If the program consists of several source files, they
can be individually compiled and linked with, say, C.BAT.

Call:

cc pgm1

VCRT5 Software Manual of Operation System Functions

© 2010 Vision Components GmbH Ettlingen, Germany VCRT5.pdf

77

This call compiles the program pgm1.c. It creates the files pgm1.out and pgm1.msf in the working
directory

cc.bat links your program with the Texas Instruments runtime library and the Vision Components
libraries vcrt.a and vclib.a.

The –s option of the linker and the command strip6x remove all unnecessary information in the
output file. For debugging purposes, it may be helpful to have this information. In this case remove
both from the batch file.

This batch file also produces a loader map pgm1.map .

15.3 cc.cmd

The linking process is controlled by the file cc.cmd

-c
/* -priority */ /* CCS 3.0 and above */
-l vcrt4.lib
-l vclib.lib
-l extlib.lib
-l colorlib.lib
-l flib.lib
-l rts6200.lib
-u _c_int01
-e _c_int01
-stack 0x4000 /* adjust appropriate - stack size: min=0x4000 max depends on camera max mem */
-heap 0x400 /* adjust appropriate - heap size : min=0x400 max depends on camera max mem */

MEMORY
{
 PMEM: o = 0a0200000h l = 100000h /* intended for initialization */
 BMEM: o = 0a0090000h l = 40000h /* .bss, .system, .stack, .cinit */
}

SECTIONS
{
 .text > PMEM
 .tables > PMEM
 .data > PMEM
 .stack > BMEM
 .bss > PMEM
 .sysmem > PMEM
 .cinit > PMEM
 .const > PMEM
 .cio > PMEM
 .far > PMEM
}

Here, the libraries are specified (vcrt4.lib, vclib.lib, extlib.lib,colorlib.lib,
flib.lib , rts6201.lib)
The stack size (-stack 0x4000), the heap size (-heap 0x400), and the memory map are
specified. The stack size is only valid if the program is loaded as a parallel task into the module
directory. The heap size is important if the function uses the TI-function malloc(). This may be the
case for most of the C++ programs, where it is recommended to specify a large heap space.

VCRT5 Software Manual of Operation System Functions

© 2010 Vision Components GmbH Ettlingen, Germany VCRT5.pdf

78

15.4 Large Projects

For large projects consisting of several C source files, it is easy to create your own .BAT files for
compiling and linking.

The following illustrates how to do this, based on the .BAT files used when creating the operating
system.

The individual C files can be compiled with, say, C.BAT.

To compile all C files, a .BAT file called MAKE.BAT can be used. Of course, this file must be tailored
to each project.

Please do not forget to change this file whenever you add or delete C files from the project.

cl6x -o3 -ml3 loader.c
cl6x -o3 -ml3 rs232.c
cl6x -o3 -ml3 rs232a.c
cl6x -o3 -ml3 setbaud.c
cl6x -o3 -ml3 fnaddr.c
cl6x -o3 -ml3 search.c
cl6x -o3 -ml3 coldport.c
cl6x -o3 -ml3 main.c
cl6x -o3 -ml3 bd.c
cl6x -o3 -ml3 del.c
cl6x -o3 -ml3 dir.c
cl6x -o3 -ml3 dwn.c
cl6x -o3 -ml3 dmp.c
cl6x -o3 -ml3 dd.c
cl6x -o3 -ml3 er.c
cl6x -o3 -ml3 ex.c
cl6x -o3 -ml3 fd.c
cl6x -o3 -ml3 go.c
cl6x -o3 -ml3 he.c
cl6x -o3 -ml3 ht.c

lnk6x –s -u _c_int01 shell.obj -m shell.map -o shell.out shell.cmd
strip6x shell.out
copy shell.out exec.out
\adsp\21xx\util\econv shell
\adsp\21xx\util\scvt
copy adsp.msf shell.msf

Our MAKE.BAT contains a linker call, but we usually use a second batch file (L2.BAT) for linking and
creating the .MSF file.

lnk6x -u _c_int01 shell.obj -m shell.map -o shell.out shell.cmd
strip6x shell.out
copy shell.out exec.out
\adsp\21xx\util\econv shell
\adsp\21xx\util\scvt
copy adsp.msf shell.msf

This calls the linker (lnk6x) with a reference to the file shell.cmd. This option causes the linker to read
the file names required for linking the project from the file shell.cmd.

For our project, shell.cmd must contain the following:

VCRT5 Software Manual of Operation System Functions

© 2010 Vision Components GmbH Ettlingen, Germany VCRT5.pdf

79

loader.obj
rs232.obj
rs232a.obj
setbaud.obj
fnaddr.obj
search.obj
coldport.obj
main.obj
bd.obj
del.obj
dir.obj
dwn.obj
dmp.obj
dd.obj
er.obj
ex.obj
fd.obj
go.obj
he.obj
ht.obj

This file must be modified as the project develops. All objects not listed here are taken from either the
run-time library rts6201.lib or from the VCRT library.

15.5 Relocateable Objects

The linker allows to create relocateable objects. This is necessary if parallel processes need to be
started using the relocateable loader of the VCRT operating system. The relocateable loader loads the
programs not to the addresses for which they originally have been linked, but to memory addresses
where the system allocates memory for this program. This method is thus very flexible and
convenient. The load addresses of the programs may be listed using the mdir shell command.

Relocateable objects may be created using the batch file:

ccr.bat

cl6x -o3 -mi100000 -pl %1.c
lnk6x -ar -u _c_int01 %1.obj -m %1.map -o %1.out ccr.cmd
strip6x %1.out

copy %1.out exec.out
..\util\econv %1
..\util\scvt
copy adsp.msf %1.msf

ccr.cmd

-c
/* -priority */ /* CCS 3.0 and above */
-l vcrt4.lib
-l vclib.lib
-l extlib.lib
-l colorlib.lib
-l flib.lib
-l rts6200.lib
-u _c_int01
-e _c_int01
-stack 0x4000 /* adjust appropriate - stack size: min=0x4000 max depends on camera max mem */
-heap 0x400 /* adjust appropriate - heap size : min=0x400 max depends on camera max mem */

MEMORY
{

VCRT5 Software Manual of Operation System Functions

© 2010 Vision Components GmbH Ettlingen, Germany VCRT5.pdf

80

 PMEM: o = 0h l = 0ffffffffh
}

SECTIONS
{
.text : ALIGN(32) { *(.text) } > PMEM
.const : ALIGN(8) {} > PMEM
.data : ALIGN(8) {} > PMEM
.bss : ALIGN(8) { *(.bss) } > PMEM
.cinit : ALIGN(4) { *(.cinit) } > PMEM /* cflag option only */
.pinit : ALIGN(4) {} > PMEM /* cflag option only */
.stack : ALIGN(8) {} > PMEM /* cflag option only */
.far : ALIGN(8) {} > PMEM /* cflag option only */
.sysmem: ALIGN(8) {} > PMEM /* cflag option only */
.switch: ALIGN(4) {} > PMEM /* cflag option only */
.cio : ALIGN(4) {} > PMEM /* cflag option only */
}

VCRT5 Software Manual of Operation System Functions

© 2010 Vision Components GmbH Ettlingen, Germany VCRT5.pdf

81

16 Description of the Example Programs

16.1 test.c

This is the first program you should compile to check if everything works correctly.
The program just outputs:

 hello world !!!!

16.2 info.c

The program "info" outputs a series of system variables via the serial interface. For example, the
image format can be determined. The following is a copy of the program's printout running on a VC51:

$info

* System-Variables *

cpu clock frequency : 39321600
current video line : 39
startpage of image : 0
startaddress image : 0x0
active hor. pixels/2 : 372
active ver. pixels : 574
pitch / 2 : 512
startpage overlay : 143
startaddress overlay
byte address : 0x00047700
bit address : 0x0023B800
overlay pitch / 16 : 64
Offset_Overlay : 2048
overlay hw offset : 46

$

VCRT5 Software Manual of Operation System Functions

© 2010 Vision Components GmbH Ettlingen, Germany VCRT5.pdf

82

17 List of VC/RT Functions

Memory Allocation Functions

Name Type Description

void prtfree(void) M Print available memory segments
void *vcmalloc(unsigned int size) M Allocate memory
void vcfree(void *ptr) M Release memory
void *sysmalloc (unsigned nwords, S Allocate system memory

int type)
void sysfree (void *ap) S Release system memory
void sysprtfree (void) S Print available system memory segm.

U8 *DRAMScreenMalloc(void) M allocate DRAM for full screen storage

General I/O Functions

Name Type Description

FILE *io_fopen(char *path, char *mode) C open a device, get file pointer
int io_fclose(FILE *fp) C close a device
int io_read(FILE *fp, char *buf, int cnt) C read from device
int io_write(FILE *fp, char *buf, C write to device
 int cnt)
int io_ioctl(FILE *fp, unsigned cmd, C I/O control
 void *param)
int io_fgetc(FILE *fp) C get character from device
int io_fputc(int c, FILE *fp) C output character to device

int io_fseek(FILE *fp, int offset, C set the file position
 unsigned start_from)

FILE *io_get_handle(unsigned stdio_type) C get a pointer to the default standard

 I/O stream

I32 *io_pipe_install(char *name, C install a pipe device
 U32 size)

Program Execution

Name Type Description

int exec(char *fname, p1,p2, ... , pn) S Load and execute a program

int exec2(char *fname, p1,p2, ... , pn) S Load and execute a program
 as a parallel task

VCRT5 Software Manual of Operation System Functions

© 2010 Vision Components GmbH Ettlingen, Germany VCRT5.pdf

83

I/O Functions

Name Type Description

void pstr(char *str) C Output a string via the serial interface
void print(char *format, ...) C Formatted output of text and variables
void sprint(char *s, char *format, ...) C Formatted output of text and variables
 to a string
int hextoi(char *s) C convert hex value string to integer
void setRTS(void) M set RTS signal
void resRTS(void) M reset RTS signal
void setPLCn(void) M set PLC signal
void resPLCn(void) M reset PLC signal
void outPLC(int value) S output value to PLC
int inPLC(void) M input value from PLC

Video Control Functions

Name Type Description

int capture_request(int exp, int gain, S Put request for image capture into

int *start, int mode) capture queue
int cancel_capture_rq(void) S abort capture request queue
void vmode(int mode) C Set video modes
void tpict() C Picture taking function
long shutter(long stime) C Select shutter speed
int tpp(void) C Picture taking function for
 progressive scan
int tpstart(void) C Picture taking function for
 progressive scan
void tpwait(void) M Wait for completion of picture taking
 function / progressive scan
int tenable(void) C Trigger enable for interrupt driven
 image acquisition
int trdy(void) C Check the status of the picture taking
 function / external trigger mode
void SET_trig_lossy(void) M select “lossy” external trigger mode
void SET_trig_sticky(void) M select “sticky” external trigger mode

VCRT5 Software Manual of Operation System Functions

© 2010 Vision Components GmbH Ettlingen, Germany VCRT5.pdf

84

RS232 (V24) Basic Functions

Name Type Description

void rs232snd(char c) S Output a character/serial interface
void putchar(char c) M Output a character/serial interface
char rs232rcv() S Read a character/serial interface
char getchar() M Read a character/serial interface
int sbready() S send buffer ready/serial interface
int rbready() S receive buffer ready/serial interface
void setbaud(long baudrate) S set baudrate for serial interface
char kbdrcv() S Read a character/keyboard
int kbready() S receive buffer ready/keyboard

Utilities

Name Type Description

int getvar(int var) S Read system variable
void setvar(int var, int x) S Write system variable
long getlvar(int var) S Read system variable (long)
void setlvar(int var, long x) S Write system variable (long)
float getfvar(int var) S Read system variable (float)
void setfvar(int var, float x) S Write system variable (float)
int getstptr() A Read stack pointer
int getdp() A Read data pointer
int getbss() A read start of bss

VCRT5 Software Manual of Operation System Functions

© 2010 Vision Components GmbH Ettlingen, Germany VCRT5.pdf

85

Lookuptable Functions

Name Type Description

int set_overlay_bit(int bit, int r, C assign a color to an overlay bitplane

int g, int b)
void set_translucent(int table, C assign a color to a translucent

int r, int g, int b) overlay table
void set_ovlmask(int mask) C set overlay mask register
void init_LUT(void) C init image data LUT / black-and-white
void init_LUT_gamma(float gamma) C init image output LUT using gamma
 correction
void init_color_lut(I32 red, C initialize color input LUT
 I32 green, I32 blue)

Time related functions

Name Type Description

void c_time(long zsec, int tz, C convert system time – extract time

int *sec, int *min, int *hour)
void c_date(long zsec, int tz, C convert system time – extract date

int *day, int *month, int *year)
void c_timedate(long zsec, int tz, C convert system time – extract date

int *sec, int *min, int *hour, and time
int *day, int *month, int *year)

void ltime(int *sec, int *min, M convert system time –
int *hour) extract local time

void ldate(int *day, int *month, M convert system time –
int *year) extract local date

void ltimedate(int *sec, int *min, M convert system time –
int *hour, int *day, int *month, extract local date and time

int *year)
void gtime(int *sec, int *min, M convert system time –

int *hour) extract GMT time
void gdate(int *day, int *month, M convert system time –

int *year) extract GMT date
void gtimedate(int *sec, int *min, M convert system time –

int *hour, int *day, int *month, extract GMT date and time
int *year)

unsigned long x_timedate(int tz, int sec, C calculate system time
int min, int hour,
int day, int month,

int year)
void xtimedate(int sec, int min,

int hour, int day, int month, M calculate system time and system
int year) store in variable SEC

Legend: A: Assembly function C: C function S: System call M: Macro

VCRT5 Software Manual of Operation System Functions

© 2010 Vision Components GmbH Ettlingen, Germany VCRT5.pdf

86

Index

baudrate...7
bd (Shell Command)......................................7
cd (Shell Command)......................................8
close

close a Device..30
device

close...30
read..30
read character from a device32
write..31
write a character to a device......................32

DRAM
Organization of the DRAM.........................67
Organization of the Overlay DRAM68

DRAMScreenMalloc28
exec

Overview ..21
external trigger...84
File

c.bat ...77
cc.cmd..78
File Structure..70

Files
Overview useful Files.................................77

fio_fgetc ...32
Flash EPROM Functions34
General I/O Functions29

io_fclose...30
io_fgetc ..32
io_fputc ..32
io_fread ..30
io_write...31

General Information...2
I/O Functions ...36

print ..36
setRTS ...37

Image Acquisition
triggered...47

init_color_lut56, 86
init_LUT_gamma55, 86
io_fclose...30
io_fputc ..32
io_fread..30
io_write ..31
Library Functions

Memory Allocation Functions.....................25
Overview ..25

Lookup Table Functions53
Memory

Allocate DRAM for one Screen 28
print list of available memory..................... 26

Memory Allocation Functions........................ 25
DRAMScreenMalloc.................................. 28
prtfree .. 26

Operating System
Kernel .. 4
Resources ... 3
Tasks of... 2

Overlay
Organization of the Overlay DRAM........... 68

Overview
Library Functions....................................... 25

OVLY_ACTIVE .. 55
path

working directory ... 8
print ... 36
program

calling .. 21
prtfree.. 26
read

read from Device....................................... 30
RS232 Basic Functions 48
Serial Interface.. 48

Formatted Output 36
Set RTS signal .. 37

set_translucent.. 54
SET_trig_lossy.. 47, 84
SET_trig_sticky...................................... 84
setRTS .. 37
Shell .. 5

Description of the Commands..................... 7
Shell Commands

bd .. 7
cd... 8
tp 18

STORING ... 71
System Variables

List of System Variables............................ 71
take picture.. 18
Time Related Functions
tp (Shell Command) 18
trigger.. 47
Utility Functions... 51
Video Control Functions 40

SET_trig_lossy .. 47
vmode.. 42

video mode ... 42
vmode ... 42

VCRT5 Software Manual of Operation System Functions

© 2010 Vision Components GmbH Ettlingen, Germany VCRT5.pdf

87

wb..20
write

write to a device .. 31

VCRT5 Software Manual of Operation System Functions

© 2010 Vision Components GmbH Ettlingen, Germany VCRT5.pdf

88

Visit the Vision Components site www.vision-components.com for further information and
documentation and software downloads:

Web Site Menu Links Content
Home Latest News from VC

Our Company VC Company Information

Contact Us Distributor list / Enquiry forms

News More News form VC

Products
VC Smart Camera Hardware

Product Overviews:
including accessories listings
with corresponding order numbers

VCXX Camera Series
VC20XX, VC4XXX Smart Cameras
VCSBC Board Cameras
VCM Camera Sensors

VC Smart Camera Software
VCRT Operating System
VCLIB Image Processing Library
Vision Components’ Special
Libraries

M200 Data Matrix Code Reader
VCOCR Text Recognition
Color Lib

VC Smart Camera Accessories Cables, lenses and other
accessories

Support:
Support News Overview about latest features,

manuals and SW updates

Knowledge Base / FAQ Searchable HW and SW
information database

Download Area Download of all:
Public Download Area
(free access)

- Product brochures
- Camera Manuals
- Getting Started

Registered User Dl Area
(registration required)

- Software Manuals
- Training Manuals and Code

Customer Download Area
(user- and software registration
required)

- Developement Libraries and
Camera OS Updates and
Archives

- Special Library Updates
- Utility Software

RMA Number Request Form - Repair Number Request Form

